Nonisomorphic groups can have very similar multiplication (Cayley) tables. For example, the two groups
\begin{align*} \mathbb{Z}/9\mathbb{Z}&=\{\overset{a}{0},\overset{b}{1},\overset{c}{2},\overset{d}{3},\overset{e}{4},\overset{f}{5},\overset{g}{6},\overset{h}{7},\overset{i}{8}\}\\ \mathbb{Z}/3\mathbb{Z}\times\mathbb{Z}/3\mathbb{Z}&=\{\underset{a}{(0,0)},\underset{b}{(0,1)},\underset{i}{(0,2)},\underset{d}{(1,0)},\underset{e}{(1,1)},\underset{c}{(1,2)},\underset{g}{(2,0)},\underset{h}{(2,1)},\underset{f}{(2,2)}\} \end{align*}
have multiplication (Cayley) tables
\begin{array}{r|ccccccccc} \mathbb{Z}/9\mathbb{Z}&a&b&c&d&e&f&g&h&i\\\hline a&a&b&c&d&e&f&g&h&i\\ b&b&c&d&e&f&g&h&i&a\\ c&c&d&e&f&g&h&i&a&b\\ d&d&e&f&g&h&i&a&b&c\\ e&e&f&g&h&i&a&b&c&d\\ f&f&g&h&i&a&b&c&d&e\\ g&g&h&i&a&b&c&d&e&f\\ h&h&i&a&b&c&d&e&f&g\\ i&i&a&b&c&d&e&f&g&h\\ \end{array}
and
\begin{array}{r|ccccccccc} \mathbb{Z}/3\mathbb{Z}\times\mathbb{Z}/3\mathbb{Z}&a&b&c&d&e&f&g&h&i\\\hline a&a&b&c&d&e&f&g&h&i\\ b&b&\boxed{i}&d&e&\boxed{c}&g&h&\boxed{f}&a\\ c&c&d&\boxed{h}&f&g&\boxed{b}&i&a&\boxed{e}\\ d&d&e&f&g&h&i&a&b&c\\ e&e&\boxed{c}&g&h&\boxed{f}&a&b&\boxed{i}&d\\ f&f&g&\boxed{b}&i&a&\boxed{e}&c&d&\boxed{h}\\ g&g&h&i&a&b&c&d&e&f\\ h&h&\boxed{f}&a&b&\boxed{i}&d&e&\boxed{c}&g\\ i&i&a&\boxed{e}&c&d&\boxed{h}&f&g&\boxed{b}\\ \end{array}
respectively (note the boxed elements are different). The proportion of different elements between these two tables is $\frac{18}{9\times 9}=\frac{2}{9}\approx 22.2\%$.
Given a finite group $G=\{g_1\ldots g_n\}$ with a fixed enumeration of its elements, we define its multiplication table to be the unique matrix $M_G\in\{1\ldots n\}^{n\times n}$ such that for all $i,j\le n$, if $k=(M_G)_{ij}$ then $g_i\cdot g_j=g_k$.
Question.
Given $\varepsilon=\frac{1}{1000}$, does there exist two finite groups $G=\{g_1\ldots g_n\},H=\{h_1\ldots h_n\}$ with multiplication tables $M_G,M_H$, such that for all but at most $\varepsilon n^2$ many pairs $(i,j)\in\{1\ldots n\}^2$, it holds that $(M_G)_{ij}=(M_H)_{ij}$, and $G\not\cong H$?
Thanks for your help.