What I do so far \begin{align*} \text{Show that} \quad &\sum_{n=1}^{+\infty}\frac{1}{(n\cdot\sinh(n\pi))^2} = \frac{2}{3}\sum_{n=1}^{+\infty}\frac{(-1)^{n-1}}{(2n-1)^2} - \frac{11\pi^2}{180} \\ \text{Lemma 1 } &\sum_{n = - \infty }^\infty \frac{1}{{z + n}} = \frac{\pi }{{\tan (\pi z)}} \\ \text{Lemma 2 } &\frac{1}{{\sinh^2(\pi z)}} = \frac{1}{{\pi^2 z^2}} + \frac{4z^2}{{\pi^2}}\sum_{k=1}^\infty \frac{1}{{(z^2 + k^2)^2}} - \frac{2}{{\pi^2}}\sum_{k=1}^\infty \frac{1}{{z^2 + k^2}} \\ &\text{Because:} \nonumber \\ &\frac{\pi }{{\tan (\pi z)}} = \sum_{k = - \infty }^\infty \frac{1}{{z + k}} \Rightarrow \left( \frac{\pi }{{\tan (\pi z)}} \right)' = -\sum_{k = - \infty }^\infty \frac{1}{{(z + k)^2}} \nonumber \\ &\Rightarrow \boxed{\frac{\pi^2}{\sin^2(\pi z)}} = \sum_{k = - \infty }^\infty \frac{1}{{(z + k)^2}} \Rightarrow \nonumber \\ &\Rightarrow \frac{\pi^2}{\sin^2(\pi iz)} = \sum_{k = - \infty }^\infty \frac{1}{{(iz + k)^2}} \Rightarrow \frac{\pi^2}{\sinh^2(\pi z)} = \sum_{k = - \infty }^\infty \frac{1}{{(iz + k)^2}} \Rightarrow \boxed{\frac{\pi^2}{\sinh^2(\pi z)} = \sum_{k = - \infty }^\infty \frac{1}{{(z + ik)^2}} = \sum_{k = - \infty }^\infty \frac{1}{{(z - ik)^2}}} \nonumber \\ &\text{then} \nonumber \\ &\frac{1}{{\sinh^2(\pi z)}} = \frac{1}{{2\pi^2}}\sum_{k = - \infty }^\infty \left( \frac{1}{{(z + ik)^2}} + \frac{1}{{(z - ik)^2}} \right) \nonumber \\ &= \frac{1}{{\pi^2}}\sum_{k = - \infty }^\infty \frac{z^2 - k^2}{{(z^2 + k^2)^2}} = \frac{1}{{\pi^2}}\sum_{k = - \infty }^\infty \frac{2z^2 - (z^2 + k^2)}{{(z^2 + k^2)^2}} \nonumber \\ &= \frac{1}{{\pi^2}} \left( 2z^2\sum_{k = - \infty }^\infty \frac{1}{{(z^2 + k^2)^2}} - \frac{1}{{\pi^2}}\sum_{k = - \infty }^\infty \frac{1}{{z^2 + k^2}} \right) \nonumber \\ &\Rightarrow \boxed{\frac{1}{{\sinh^2(\pi z)}} = \frac{1}{{\pi^2 z^2}} + \frac{4z^2}{{\pi^2}}\sum_{k=1}^\infty \frac{1}{{(z^2 + k^2)^2}} - \frac{2}{{\pi^2}}\sum_{k=1}^\infty \frac{1}{{z^2 + k^2}}} \end{align*}
We replace $z$ with $n$ and sum, so it results:
\begin{align*} &\sum_{n=1}^\infty \frac{1}{n^2\sinh^2(\pi n)} \\ &= \frac{1}{\pi^2}\sum_{n=1}^\infty \frac{1}{n^4} + \frac{4}{\pi^2}\sum_{n=1}^\infty \sum_{k=1}^\infty \frac{1}{(n^2+k^2)^2} - \frac{2}{\pi^2}\sum_{n=1}^\infty \sum_{k=1}^\infty \frac{1}{n^2(n^2+k^2)} \end{align*}
But it is known that
$$ \frac{1}{\pi^2}\sum_{n=1}^\infty \frac{1}{n^4} = \frac{1}{\pi^2}\cdot \zeta(4) = \frac{\pi^2}{90} $$
for the sum
$$ \sum_{n=1}^\infty \sum_{k=1}^\infty \frac{1}{n^2(n^2+k^2)} $$
we have:
\begin{align*} S &= \sum_{n=1}^\infty \sum_{k=1}^\infty \frac{1}{n^2(n^2+k^2)} \\ &= \sum_{n=1}^\infty \sum_{k=1}^\infty \frac{1}{k^2}\left(\frac{1}{n^2} - \frac{1}{n^2+k^2}\right) \\ &= \sum_{n=1}^\infty \sum_{k=1}^\infty \frac{1}{k^2}\frac{1}{n^2} - \sum_{n=1}^\infty \sum_{k=1}^\infty \frac{1}{k^2(n^2+k^2)} \\ &\Rightarrow S = \left(\sum_{n=1}^\infty \frac{1}{n^2}\right)\left(\sum_{k=1}^\infty \frac{1}{k^2}\right) - S \\ &\Rightarrow 2S = \left(\frac{\pi^2}{6}\right)^2 \\ &\Rightarrow S = \frac{\pi^4}{72} \end{align*}
So finally
$$ \boxed{\sum_{n=1}^\infty \frac{1}{n^2\sinh^2(\pi n)} = \frac{4}{\pi^2}\sum_{n=1}^\infty \sum_{k=1}^\infty \frac{1}{(n^2+k^2)^2} - \frac{\pi^2}{60}} $$
The final double sum is related to functions $\zeta(2)$ & $\zeta(4)$ that are missing all add-ins of natural ones that are not written as sum of two squares. From Fermat's theorem (proved by Euler) we know that if some natural number has a prime factor of form $p = 4k + 3$ raised to odd force, then it is not written as the sum of two squares.
I read that
$$ \sum_{n=1}^\infty \sum_{k=1}^\infty \frac{1}{(n^2+k^2)^2} = \zeta(2) \cdot \sum_{n=1}^\infty (-1)^{n-1}\frac{1}{(2n-1)^2} - \zeta(4) $$
somewhere, but I have no proof of this, nor have I been able to discover any.
Given the above:
\begin{align*} &\sum_{n=1}^\infty \frac{1}{n^2\sinh^2(\pi n)} \\ &= \frac{4}{\pi^2}\left(\zeta(2) \cdot \sum_{n=1}^\infty (-1)^{n-1}\frac{1}{(2n-1)^2} - \zeta(4)\right) - \frac{\pi^2}{60} \\ &= \frac{4}{\pi^2}\left(\frac{\pi^2}{6} \cdot \sum_{n=1}^\infty (-1)^{n-1}\frac{1}{(2n-1)^2} - \frac{\pi^4}{90}\right) - \frac{\pi^2}{60} \\ &= \frac{2}{3}\sum_{n=1}^\infty (-1)^{n-1}\frac{1}{(2n-1)^2} - \left(\frac{2\pi^2}{45} + \frac{\pi^2}{60}\right) \\ &= \frac{2}{3}\sum_{n=1}^\infty (-1)^{n-1}\frac{1}{(2n-1)^2} - \frac{11\pi^2}{180} \end{align*}
I would be very interested to see a proof of the relationship
$$ \sum_{n=1}^\infty \sum_{k=1}^\infty \frac{1}{(n^2+k^2)^2} = \zeta(2) \cdot \sum_{n=1}^\infty (-1)^{n-1}\frac{1}{(2n-1)^2} - \zeta(4) $$
which is true (tested with handmade program in Visual Basic).