Property 1: $\;$If $\;a\geqslant0\,,\;b\geqslant0\;$ and $\;ab\leqslant4\;$ then $\;\big(a-2\big)^{\!2}\!+b\left(a^2+a-4\right)+b^2\left(1+a-a^2\right)\geqslant0\;.$
Proof:
If $\;0\leqslant a\leqslant\dfrac85\;,\;$ then it results that
$\big(a-2\big)^{\!2}\!+b\left(a^2+a-4\right)+b^2\left(1+a-a^2\right)=$
$=\big(a-2\big)^{\!2}\!+b\left(a^2+a-4\right)+\dfrac{b^2\left(a^2+a-4\right)^2}{4(a-2)^2}+b^2\left[1+a-a^2-\dfrac{\left(a^2+a-4\right)^2}{4(a-2)^2}\right]=$
$=\!\!\left[(a\!-\!2)+\dfrac{b\!\left(a^2\!+\!a\!-\!4\right)}{2(a\!-\!2)}\right]^2\!\!+\dfrac{b^2\!\left(-5a^4\!+\!18a^3\!-\!21a^2\!+\!8a\right)}{4(a\!-\!2)^2}\!=$
$=\left[(a\!-\!2)+\dfrac{b\left(a^2\!+\!a\!-\!4\right)}{2(a\!-\!2)}\right]^2\!+\dfrac{ab^2(a-1)^2(8-5a)}{4(a-2)^2}\geqslant0\;.$
If $\;a>\dfrac85\;,\;$ then $\;a^2+a-4>\dfrac{64}{25}+\dfrac85-4=\dfrac4{25}>0\;$ and
$\big(a-2\big)^{\!2}\!+b\left(a^2+a-4\right)+b^2\left(1+a-a^2\right)\underset{\overbrace{\text{ because }ab\leqslant4\;}}{\geqslant}$
$\geqslant\dfrac{a^2b^2(a-2)^2}{16}+\dfrac{ab^2}4\left(a^2+a-4\right)+b^2\left(1+a-a^2\right)=$
$=\dfrac{b^2}{16}\bigg[a^2(a-2)^2+4a\left(a^2+a-4\right)+16\left(1+a-a^2\right)\!\bigg]=$
$=\dfrac{b^2}{16}\bigg[a^4-8a^2+16\bigg]=\dfrac{b^2}{16}\left(a^2-4\right)^2\geqslant0\;.$
$\;$
Property 2: $\,$If $\,a\!\geqslant\!0\,,\,b\!\geqslant\!0\,,\,c\!\geqslant\!0\,$ and $\,ab\!+\!bc\!+\!ac\!+\!abc\!=\!4$
then it results that
$\;\begin{cases}\sqrt{ab}\geqslant\dfrac{ab(1+c)}2\\[3pt]\sqrt{bc}\geqslant\dfrac{bc(1+a)}2\\[3pt]\sqrt{ac}\geqslant\dfrac{ac(1+b)}2\end{cases}$
Proof:
It results that
$\sqrt{ab}\geqslant\sqrt{ab}-\dfrac{c\sqrt{ab}\left(\sqrt a-\sqrt b\right)^2}{2\left(\sqrt{ab}+2\right)}=$
$=\dfrac{2ab+4\sqrt{ab}-ac\sqrt{ab}-bc\sqrt{ab}+2abc}{2\left(\sqrt{ab}+2\right)}=$
$=\dfrac{\sqrt{ab}\big(4-ac-bc\big)+2ab\big(1+c\big)}{2\left(\sqrt{ab}+2\right)} \underset{\overbrace{\text{ because }ab+bc+ac+abc=4\;}}{=}$
$=\dfrac{\sqrt{ab}\big(ab+abc\big)+2ab\big(1+c\big)}{2\left(\sqrt{ab}+2\right)}=\dfrac{ab(1+c)\left(\sqrt{ab}+2\right)}{2\left(\sqrt{ab}+2\right)}=$
$=\dfrac{ab(1+c)}2\;.$
Analogously we can prove the other two inequalities.
$\;$
By using the previous properties we will prove that $$a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\geqslant6$$ when $\;a,b,c\geqslant0\,:\,ab+bc+ac+abc=4\;.$
Proof:
It results that $\;a+b+ab>0\;,\;$ otherwise $\;a+b+ab=0\;$ would imply that $\;a=b=0\;$ and $\;ab+bc+ac+abc=0\;$ which would be a contradiction.
From $\;ab+bc+ac+abc=4\;,\;$ we get that $\;c=\dfrac{4-ab}{a+b+ab}$
and ,$\;$ since $\;c\geqslant0\;,\;$ it follows that $\;ab\leqslant4\;.$
Moreover, it results that
$a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=$
$=a+b+\dfrac{4-ab}{a+b+ab}+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=$
$=\dfrac{a^2+ab+a^2b+b^2+ab^2+4}{a+b+ab}+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=$
$=\dfrac{\big(a\!-\!2\big)^{\!2}\!+b\left(a^2\!+\!a\!-\!4\right)+b^2\!\left(1\!+\!a\!-\!a^2\right)+4a+4b+a^2b^2}{a+b+ab}+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\underset{\overbrace{\text{ by using Property 1 }}}{\geqslant}$
$\geqslant\dfrac{4a+4b+a^2b^2}{a+b+ab}+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\underset{\overbrace{\text{ by using Property 2 }}}{\geqslant}$
$\geqslant\dfrac{4a+4b+a^2b^2}{a+b+ab}+\dfrac{ab(1+c)}2+\dfrac{bc(1+a)}2+\dfrac{ac(1+b)}2=$
$=\dfrac{4a+4b+a^2b^2}{a+b+ab}+\dfrac{ab+bc+ac+abc+2abc}2=$
$=\dfrac{4a+4b+a^2b^2}{a+b+ab}+\dfrac{4+2abc}2=$
$=\dfrac{4a+4b+a^2b^2}{a+b+ab}+abc+2=$
$=\dfrac{4a+4b+a^2b^2}{a+b+ab}+\dfrac{ab(4-ab)}{a+b+ab}+2=$
$=\dfrac{4a+4b+a^2b^2+4ab-a^2b^2}{a+b+ab}+2=$
$=\dfrac{4(a+b+ab)}{a+b+ab}+2=4+2=6\;.$