Given: $$\vec{A}(r,\theta)$$ $$\vec{B}(r,\theta)$$ Is it always true that:
$$ \left(\vec{A}\frac{\partial}{\partial{\theta}}\right)\bullet\vec{B}\overset ? =\bigg(\vec{A}\bullet\frac{\partial\vec{B}}{\partial{\theta}}\bigg) $$
The reason I ask is because, when evaluating: $$\vec{\nabla} \bullet \vec{u}$$
it was assumed that: $$ \left(\hat{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}\right) \bullet (u_r \hat{r}) =\hat{\theta} \bullet \left(\frac{1}{r} \frac{\partial (u_r \hat{r})}{\partial \theta} \right) $$ See image: Computation of the Divergence in Polar Form
Image Source: