Let $\mathcal{E}(S^1)$ be the space of smooth functions on the circle $S^1$ and denote its dual as $\mathcal{E}'(S^1)$.
Then, by the Minlos theorem, there exists a unique probability measure $\mu$ on $\mathcal{E}'(S^1)$ such that \begin{equation} e^{-\frac{1}{2}\lVert f \rVert^2_{L^2}}=\int_{\mathcal{E}'(S^1)} e^{iT(f)}d\mu(T) \end{equation} for all $f \in \mathcal{E}(S^1)$.
Also, we know that $\mathcal{E}(S^1) \subset L^2(S^1) \subset \mathcal{E}'(S^1)$.
My question: is it true that $\mu\bigl(L^2(S^1) \bigr) \neq 0$? If so, how do I prove this?
Could anyone please help me?