Firstly consider the homogeneous Laplacian equation $\Delta u=0$. Use separate variable method, $u(x,y)=X(x)Y(y)$, then $\frac{X''}{X}=-\frac{Y''}{Y}=c$. Obviously $c$ is negative, $X(x)=A\sin\sqrt{c}x+B\cos\sqrt{c}x$ where $A,B$ are constants. $X(0)=0\Rightarrow B=0$, $X(1)=0\Rightarrow c=n^2\pi^2(n\in\mathbb{N})$, $X(x)=A\sin{n\pi x}$. Turn to $Y(y)$ to get the similar result (but needn't to plug $c=n^2\pi^2$ in), $Y(y)=C\sin{m\pi y} (m\in\mathbb{N})$. This is why $u(x,y)$ can have the form $\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}A_{nm}\sin{n\pi x}\sin{m\pi y}$.
In the inhomogeneous situation, it is time to use separate method to $\varphi(x,y)$. In PDE's theory a solution to Poisson equation can have the form $\varphi(x,y)=\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}b_{nm}\sin{n\pi x}\sin{m\pi y}$, here $b_{nm}$ is the Fourier coefficient similar to the homogeneous one.
It's easy to know when make a Fourier expansion to $\varphi(x,y)$ with respect to $x$, it is $\varphi(x,y)=\sum_{n=1}^{\infty}a_{n}(y)\sin{n\pi x}$, here $a_{n}(y)$ is
\begin{equation}
a_{n}(y)=2\int_{0}^{1}\varphi(x,y)\sin{n\pi x}\ \mathrm{d}x
\end{equation}
Similarly do the same with respect to $y$ above, $a_{n}(y)=\sum_{m=1}^{\infty}b_{nm}\sin{m\pi y}$.
Calculate that to get
\begin{equation}
b_{nm}=4\int_{0}^{1}\left(\int_{0}^{1}\varphi(x,y)\sin{m\pi y}\ \mathrm{d}y\right)\sin{n\pi x}\ \mathrm{d}x
\end{equation}
Note that $\Delta u=-(m^2+n^2)\pi^2 u=\varphi$, so it's easy to get $A_{nm}$:
\begin{equation}
A_{nm}=\frac{-b_{nm}}{(m^2+n^2)\pi^2}
\end{equation}
Finally we have the solution
\begin{equation}
u(x,y)=\frac{-4}{\pi^2}\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\frac{1}{m^2+n^2}\left(\int_{0}^{1}\left(\int_{0}^{1}\varphi(x,y)\sin{m\pi y}\ \mathrm{d}y\right)\sin{n\pi x}\ \mathrm{d}x\right)\sin{n\pi x}\sin{m\pi y}
\end{equation}
Note that $\varphi(x,y)=xy(1-x)(1-y)$ is already separated, the solution can be more simple:
\begin{equation}
u(x,y)=\frac{-4}{\pi^2}\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\frac{1}{m^2+n^2}\left(\int_{0}^{1}x(1-x)\sin{n\pi x}\ \mathrm{d}x\right)\left(\int_{0}^{1}y(1-y)\sin{m\pi y}\ \mathrm{d}y\right)
\end{equation}