My favourite way to show these sorts of equality is to use the Leibniz rule.
Let $X$ and $Y$ be two vector fields, $\omega$ be a $k$-form, and $v_2,\ldots,v_k$ be $k-1$ other vector fields.
Then, by applying twice Leibniz' rule
$\DeclareMathOperator{\lie}{\mathscr{L}}$
\begin{align}
(\lie_X(\iota_Y\omega))(v_2,\ldots,v_k)
&= \lie_X(\iota_Y\omega(v_2,\ldots,v_k)) - \sum_{j=2}^k \iota_Y\omega(v_1,\ldots,\lie_Xv_j,\ldots,v_k)\\
&= \lie_X(\omega(Y,v_2,\ldots,v_k)) - \sum_{j=2}^k\omega(Y,v_2,\ldots,\lie_Xv_j,\ldots,v_k)\\
&= (\lie_X\omega)(Y,v_1,\ldots,v_k) + \omega(\lie_XY,v_2,\ldots,v_k)\\
& \quad + \sum_{i=2}^k\omega(Y,v_2,\ldots,\lie_Xv_i,\ldots,v_k)\\
& \quad - \sum_{j=2}^k\omega(Y,v_2,\ldots,\lie_Xv_j,\ldots,v_k)\\
&= (\lie_X\omega)(Y_,v_2,\ldots,v_k) + \omega([X,Y],v_2,\ldots,v_k)\\
&= (\iota_Y(\lie_X\omega))(v_2,\ldots,v_k) + (\iota_{[X,Y]}\omega)(v_2,\ldots,v_k).
\end{align}
Hence, $\lie_X(\iota_Y\omega) = \iota_Y(\lie_X\omega) + \iota_{[X,Y]}\omega$.