Let $f(x,y) = x^2-3xy+y^2$. Determine whether the point $(0,0)$ is a local maxima, local minima, or a saddle point using the eigenvalues of the Hessian of $f$ at the point $(0,0)$ or the eigenvalues of the associated symmetric matrix of $f$ .
This is start of my calculation: The Hessian is a 2x2 matrix and looks like this:
$$ \text{Hess}(f) = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix} $$
Now, calculate the second derivatives of $f$:
$$ \frac{\partial^2 f}{\partial x^2} = 2 $$
$$ \frac{\partial^2 f}{\partial y^2} = 2 $$
$$ \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = -3 $$
So the Hessian of $f$ is:
$$ \text{Hess}(f) = \begin{bmatrix} 2 & -3 \\ -3 & 2 \end{bmatrix} $$
Now we need to calculate the eigenvalues of this matrix. The eigenvalues can be calculated by solving the determinant equation:
$$ \text{det}(\text{Hess}(f) - \lambda E) = 0 $$
where $\lambda$ is the eigenvalue we are looking for and $E$ is the identity matrix. For our Hessian matrix we get:
$$ \text{det}\left(\begin{bmatrix} 2-\lambda & -3 \\ -3 & 2-\lambda \end{bmatrix}\right) = 0 $$
How to continue?