1

So the first is obvious: $$\int \frac{1}{2x+2} dx = \frac{1}{2}\ln(2x+2) + C$$ Now, what if I do something like this: $$\int \frac{1}{2x+2} dx = \int \frac{1}{2(x+1)} dx = (\frac{1}{2}\int \frac{1}{x+1} dx) =\frac{1}{2}\ln(x+1) + C$$ Why can't I "take" the half out of the integral? (Sorry if the formatting is weird)

Dror
  • 37

1 Answers1

2

$$\int [1/(2x+2)]dx=(1/2)(\ln|2x+2|)+C.$$ Further approaching we will get, $$(1/2)(\ln|x+1|)+(\ln|2|)/2+C.$$ Now we can write $$(\ln|2|)/2+C =C_1.$$ So, the final result will be $$(1/2)(\ln|x+1|)+C_1.$$

CiaPan
  • 13,884