\begin{align*} I = \int_0^{\pi/2} \left( \int_0^{\pi/2} \frac{\log(\cos(x/2)) - \log(\cos(y/2))}{\cos(x) - \cos(y)} dx\right) \ dy \end{align*}
What I do so far
Let $u = \cos(x/2)$ and $v = \cos(y/2)$. Then $du = -\sin(x/2) dx/2$ and $dv = -\sin(y/2) dy/2$.
$$I = \int_0^{\pi/2} \left( \int_0^{\pi/2} \frac{\log(u) - \log(v)}{u - v} \cdot \frac{-2 du}{2 \sin(x/2)} \right) \cdot \frac{-2 dv}{2 \sin(y/2)}$$
Logu=u
$$I = \int_0^{\pi/2} \left( \int_0^{\pi/2} \frac{\log(u) - \log(v)}{u - v} \cdot \frac{-2 du}{2 \sin(x/2)} \right) \cdot \frac{-2 dv}{2 \sin(y/2)} - \int_0^{\pi/2} \frac{\log(u) - \log(v)}{u - v} \cdot \frac{1}{\sin(x/2)} \cdot \frac{-2 dv}{2 \sin(y/2)}$$
$$\int \frac{\log(u) - \log(v)}{u - v} du = \log \left| \frac{u}{v} \right| + C$$
$$I = \int_0^{\pi/2} \left( \log \left| \frac{u}{v} \right| \cdot \frac{2}{\sin(y/2)} - \frac{\log(u) - \log(v)}{u - v} \cdot \frac{1}{\sin(x/2)} \cdot \frac{2 dv}{2 \sin(y/2)} \right)$$
This looks very scary