The Mellin inverse is given by
$$ \frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}dsF(s)x^{-s} $$
Is it possible to compute the inverse transform of:
$$F(s)=a^{-s} \zeta (s) $$ where: $a>0$
Mathematica gave me solution:
$$\mathcal{M}_s^{-1}\left[a^{-s} \zeta (s)\right](x)=\frac{1}{a x} ? $$ for: $\ln (a)>0\land 0<x<1$
,but if I
$$\mathcal{M}_x\left[\frac{1-\theta (x-1)}{a x}\right](s)=\frac{1}{a (-1+s)}+\frac{2 \pi \delta (i (-1+s))}{a}$$ I not get $a^{-s} \zeta (s) $ ?
Using functional equation formula for Zeta and Borel Regularization for the series I have:
$$\mathcal{M}_s^{-1}\left[a^{-s} \zeta (s)\right](x)=\mathcal{M}_s^{-1}\left[\frac{a^{-s} \zeta (1-s)}{2 (2 \pi )^{-s} \cos \left(\frac{\pi s}{2}\right) \Gamma (s)}\right](x)=\mathcal{M}_s^{-1}\left[\frac{a^{-s} \sum _{k=1}^{\infty } \frac{1}{k^{1-s}}}{2 (2 \pi )^{-s} \cos \left(\frac{\pi s}{2}\right) \Gamma (s)}\right](x)=\sum _{k=1}^{\infty } \mathcal{M}_s^{-1}\left[\frac{a^{-s}}{\left(2 (2 \pi )^{-s} \cos \left(\frac{\pi s}{2}\right) \Gamma (s)\right) k^{1-s}}\right](x)=\sum _{k=1}^{\infty } \frac{2 \cos \left(\frac{2 k \pi }{a x}\right)}{a x}=-\frac{1}{a x}$$ My and Mathematica solution are correct ?
I tried find solution in Tables 1 2 3 of Mellin Transforms ,but I didn't find my example.