I need answer for the case $n=3$.
We rename variables and obtain the following system of equations.
$$\cases{
\frac{(1-x)^2}{x}+\frac{(1-y)^2}{y}+\frac{(1-z)^2}{z} & =$\,$ 0\\
\frac{(1-x^2)^2}{x}+\frac{(1-y^2)^2}{y}+\frac{(1-z^2)^2}{z} & = $\,$0\\
\frac{(1-x^2)^3}{x}+\frac{(1-y^2)^3}{y}+\frac{(1-z^2)^3}{z} & = $\,$0}
$$
Suppose for a contradiction that $(x,y,z)\ne (1,1,1)$. Then the system
$$\cases{
u+v+w & =$\,$ 0\\
(1+x)^2u+(1+y)^2v+(1+z)^2w & = $\,$0\\
(1+x)^2(1-x^2)u+(1+y)^2(1-y^2)v+(1+z)^2(1-z^2)w& = $\,$0\\}
$$
of linear equations has a non-zero solution $(u,v,w)=\left(\frac{(1-x)^2}{x},\frac{(1-y)^2}{y},\frac{(1-z)^2}{z} \right)$.
Thus the system is degenerated, that is
$$
0=\left|\begin{matrix}
1 & 1 & 1\\
(1+x)^2 & (1+y)^2 & (1+z)^2\\
(1+x)^2(1-x^2) & (1+y)^2(1-y^2) & (1+z)^2(1-z^2)
\end{matrix}\right|=$$
$$(x-y)(x-z)(y-z)((x^2y+x^2z+xy^2+xz^2+y^2z+yz^2)+2xyz+$$ $$2(x^2+y^2+z^2)+4(xy+xz+yz)+4(x+y+z)+2)=$$
$$(x-y)(x-z)(y-z)((x^2y+x^2z+xy^2+xz^2+y^2z+yz^2)+2xyz+$$ $$2(x+y+z)^2+4(x+y+z)+2).$$
Let $\sigma_1=x+y+z$, $\sigma_2=xy+xz+yz$, and $\sigma_3=xyz$ be the symmetric polynomials on variables $x$, $y$, and $z$. Then $x^2y+x^2z+xy^2+xz^2+y^2z+yz^2=\sigma_1\sigma_2-3\sigma_3$, $x^3+y^3+z^3=\sigma_1^3-3(\sigma_1\sigma_2-3\sigma_3)-6\sigma_3=$ $\sigma_1^3-3\sigma_1\sigma_2+3\sigma_3$, and $\frac 1x+\frac 1y+\frac 1z=\frac{\sigma_2}{\sigma_3}.$
The first two equations of the initial system imply $\frac{\sigma_2}{\sigma_3}-6+\sigma_1=0$ and $$\frac{\sigma_2}{\sigma_3}-2\sigma_1+\sigma_1^3-3\sigma_1\sigma_2+3\sigma_3=0.$$ It follows $$3\sigma_1\sigma_2-3\sigma_3=\frac{\sigma_2}{\sigma_3}-2\sigma_1+\sigma_1^3=6-\sigma_1-2\sigma_1+\sigma_1^3.$$
Suppose first that $x$, $y$, and $z$ are pairwise distinct. Then
$$0=(x^2y+x^2z+xy^2+xz^2+y^2z+yz^2)+2xyz+2(x+y+z)^2+4(x+y+z)+2=$$
$$\sigma_1\sigma_2-3\sigma_3+2\sigma_3+2\sigma_1^2+4\sigma_1+2=$$
$$\sigma_1\sigma_2-\sigma_3+2\sigma_1^2+4\sigma_1+2=$$
$$2-\sigma_1+\frac 13\sigma_1^3+2\sigma_1^2+4\sigma_1+2=$$
$$\frac 13\sigma_1^3+2\sigma_1^2+3\sigma_1+4.$$
The only real root of the latter equation is $\sigma_1=-A-A^{-1}-2\approx -4.613$, where $A=\sqrt[3]{5+2\sqrt{6}}$.
We have $\sigma_2=(\sigma_1-6)\sigma_3$ and so $$3\sigma_1(\sigma_1-6)\sigma_3-3\sigma_3=3\sigma_1\sigma_2-3\sigma_3=6-3\sigma_1+\sigma_1^3.$$
Thus $$\sigma_3=\frac{6-3\sigma_1+\sigma_1^3}{3\sigma_1(\sigma_1-6)-3}\mbox{ and }\sigma_2=(\sigma_1-6)\frac{6-3\sigma_1+\sigma_1^3}{3\sigma_1(\sigma_1-6)-3}.$$
Put $p(t)=t^3-\sigma_1t^2+\sigma_2t-\sigma_3$. By Vieta's formulae, $x$, $y$, and $z$ are roots of the equation $p(t)=0$.
But the discriminant of the polynomial $p(t)$ equals
$$\sigma_1^2\sigma_2^2-4\sigma_2^3-4\sigma_1^3\sigma_3-27\sigma_3^2+18\sigma_1\sigma_2\sigma_3\approx -21.702<0,$$
so the polynomial $p(t)$ has only one real root, a contradiction.
Suppose now that $x$, $y$, and $z$ are not pairwise distinct. Permuting $x$, $y$, and $z$, if needed, we can assume that $y=z$.
Then
$$\cases{
\frac{(1-x)^2}{x}+2\frac{(1-y)^2}{y}& =$\,$ 0\\
\frac{(1-x^2)^2}{x}+2\frac{(1-y^2)^2}{y} & = $\,$0\\
\frac{(1-x^2)^3}{x}+2\frac{(1-y^2)^3}{y} & = $\,$0\\
}.$$
From the first and the second equation we obtain
$$(1+x)^2\cdot (-2)\frac{(1-y)^2}{y}+2\frac{(1-y^2)^2}{y}=0$$
$$-(1+x)^2+(1+y)^2=0$$
$$1+x=\pm (1+y)$$
If $x=y$ then $x=y=z$ and so $3\frac{(1-x)^2}{x}=0$ and $(x,y,z)=(1,1,1)$.
If $x\ne y$ then $y=-2-x$.
From the second and the third equation we obtain
$$(1-x^2)\cdot (-2)\frac{(1-y^2)^2}{y}+2\frac{(1-y^2)^3}{y}=0.$$
Since $y\ne \pm 1$, we can divide the equality by $2\frac{(1-y^2)^2}{y}$ and obtain $-(1-x^2)+1-y^2=0$, so $x^2=y^2$. Since $x\ne y$, we have $y=-x=-2-x$, a contradiction.