For number $n\ge2$, let $\xi$ be a primitive $n$-th root of unity.
The determinant of circulant matrix is a symmetric polynomial in $x_0,\dots,x_{n-1}$ $$f_n=\prod_{j=0}^{n-1}\sum_{i=0}^{n-1}ΞΎ^{ij}x_i$$ so after expansion, all coefficients are integer.
Is the following true?
For prime number $n$, all coefficients of$$f_n-\sum_{i=0}^{n-1}x_i^n$$are divisible by $n$.
Using SageMath I verified it for $n=2,3,5,7$.
For $n=5$:
from sympy import symbols
x = symbols('x_:5')
f5 = prod(sum(exp(I2pi/5ji) * x[i] for i in (0..4)) for j in (0..4))
poly = expand(f5- sum(x[i]**5 for i in (0..4))).maxima_methods().rootscontract()
output: $-5x_{0} x_{1}^{3} x_{2} + 5x_{0}^{2} x_{1} x_{2}^{2} + 5x_{0}^{2} x_{1}^{2} x_{3} - 5x_{0}^{3} x_{2} x_{3} - 5x_{1} x_{2}^{3} x_{3} + 5x_{1}^{2} x_{2} x_{3}^{2} + 5x_{0} x_{2}^{2} x_{3}^{2} - 5x_{0} x_{1} x_{3}^{3} - 5x_{0}^{3} x_{1} x_{4} + 5x_{1}^{2} x_{2}^{2} x_{4} - 5x_{0} x_{2}^{3} x_{4} - 5x_{1}^{3} x_{3} x_{4} - 5x_{0} x_{1} x_{2} x_{3} x_{4} + 5x_{0}^{2} x_{3}^{2} x_{4} - 5x_{2} x_{3}^{3} x_{4} + 5x_{0} x_{1}^{2} x_{4}^{2} + 5x_{0}^{2} x_{2} x_{4}^{2} + 5x_{2}^{2} x_{3} x_{4}^{2} + 5x_{1} x_{3}^{2} x_{4}^{2} - 5x_{1} x_{2} x_{4}^{3} - 5x_{0} x_{3} x_{4}^{3}$
poly/5 in ZZ[x]
output: True