i'm very new to Lie Theory and in general to differential geometry so this might be a very naive question.
The question is: what is the relationship between $\mathfrak{sl}(2,\mathbb{C})$ and $\mathfrak{so}(1,3)$?
When studying the Lie Algebras of the two spaces $SL(2,\mathbb{C})$, $SO(1,3)$ I arrive to the conclusion that $\mathfrak{so}(1,3)$ is generated (as a real vector space) by the six matrices \begin{equation} A_1=\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix} A_2=\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} A_3=\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \end{equation} \begin{equation} B_1=\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} B_2=\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} B_3=\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \end{equation} while $\mathfrak{sl}(2,\mathbb{C})$ is generated as a complex vector spaces by the three matrices: \begin{equation} X_1=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} X_2=\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} X_3=\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \end{equation}
If I'm not mistaken the Lie Bracket in $\mathfrak{so}(1,3)$ is defined as follows: \begin{equation} [A_i,B_j] = \sum_k\epsilon_{ijk}B_k \hspace{1cm} [A_i,A_j] =\sum_k\epsilon_{ijk}A_k \hspace{1cm}[B_i,B_j]=-\sum_k\epsilon_{ijk}A_k \end{equation} While the Lie Bracket in $\mathfrak{sl}(2,\mathbb{C})$ is: \begin{equation} [X_1,X_2]=2X_2 \hspace{1cm} [X_1,X_3]=-2X_3 \hspace{1cm} [X_2,X_3]=X_1 \end{equation}
Now, firstly I want to ask if what I stated so far is correct. If so, these two spaces are 6-dimensional vector spaces and so they are isomorphic as vector spaces, my question is: are they isomorphic also as Lie Algebras? If so, what is the map that realize such isomorphism? Moreover, is one of the two starting groups ($SO(1,3)$, $SL(2,\mathbb{C})$) simply connected? If that were the case, alongside with the (yet to prove) fact that they share the same Lie Algebra (up to isomorphism) would make one the universal covering group of the other.
Thank you in advance :)