Show that $\sqrt{10}+\sqrt{26}+\sqrt{17}+\sqrt{37} \gt \sqrt{341}$.
This is inspired by Showing $x+y>z$, where $x=\sqrt{10}+\sqrt{26}$, $y=\sqrt{17}+\sqrt{37}$, and $z=\sqrt{323}$. Is my idea corect?, where the 341 is replaced by 323.
In that problem, the difference is about $0.4949$, which enabled a quite elementary proof to work.
In this case, the difference is about $0.00098$, which is much harder.
So, is an elementary proof possible, other than computing the difference?
Note: Wolfram Alpha gives this form for the difference:
sqrt(root of x^16 - 6896 x^15 + 21218584 x^14 - 38619086608 x^13 + 46445175324092 x^12 - 39034285182032752 x^11 + 23634682317529311848 x^10 - 10471213870456147495696 x^9 + 3411556529576995933189478 x^8 - 814131450981226210018475344 x^7 + 140459189711872042665929874728 x^6 - 17103305259239135613970718210992 x^5 + 1412793771745512798455228682417916 x^4 - 74118197304168530774085170831631440 x^3 + 2187202048899771587108104647206992600 x^2 - 27077232770375735729098901781263934000 x + 26005877616308367788704404950625 near x = 9.60433×10^-7)
It also gives the minimal polynomial as
x^32 - 6896 x^30 + 21218584 x^28 - 38619086608 x^26 + 46445175324092 x^24 - 39034285182032752 x^22 + 23634682317529311848 x^20 - 10471213870456147495696 x^18 + 3411556529576995933189478 x^16 - 814131450981226210018475344 x^14 + 140459189711872042665929874728 x^12 - 17103305259239135613970718210992 x^10 + 1412793771745512798455228682417916 x^8 - 74118197304168530774085170831631440 x^6 + 2187202048899771587108104647206992600 x^4 - 27077232770375735729098901781263934000 x^2 + 26005877616308367788704404950625
Sqrt[10] + Sqrt[26] + Sqrt[17] + Sqrt[37] > Sqrt[341]gives True. – David G. Stork Aug 16 '23 at 19:53