Does anyone have any idea on how to evaluate the following generalized Ahmed integral?
$$I(t):=\int_{0}^{1}\frac{\arctan(t\sqrt{2+x^2})}{\sqrt{2+x^2}(1+x^2)}\,dx$$
My Attempt:
\begin{aligned} I’(t) &=\int_{0}^{1}\frac{1}{1+x^2}\frac{1}{1+2t^2+t^2x^2}\,dx \\ &=\frac{1}{1+t^2}\bigg[\int_{0}^{1}\frac{1}{1+x^2}\,dx-t^2\int_{0}^{1}\frac{1}{1+2t^2+t^2x^2}\,dx\bigg] \\ &=\frac{1}{1+t^2}\bigg[\arctan(x)-\frac{t}{\sqrt{1+2t^2}}\arctan\bigg(\frac{tx}{\sqrt{1+2t^2}}\bigg)\bigg]_{0}^{1} \\ &=\frac{1}{1+t^2}\bigg[\frac{\pi}{4}-\frac{t\arctan(\frac{t}{\sqrt{1+2t^2}})}{\sqrt{1+2t^2}}\bigg] \end{aligned}
And this implies
$$I(t)=I(t)-I(t\rightarrow{\infty})+\frac{\pi^2}{12}=\frac{\pi^2}{12}-\int_{t}^{\infty}I’(x)\,dx$$
And so
\begin{aligned} I(t) &=\frac{\pi^2}{12}-\int_{t}^{\infty}\frac{1}{1+x^2}\bigg[\frac{\pi}{4}-\frac{x}{\sqrt{1+2x^2}}\arctan\bigg(\frac{x}{\sqrt{1+2x^2}}\bigg)\bigg]\,dx \\ &=\frac{\pi^2}{12}-\frac{\pi}{4}\arctan\bigg(\frac{1}{t}\bigg)+\int_{t}^{\infty}\frac{x}{(1+x^2)\sqrt{1+2x^2}}\arctan\bigg(\frac{x}{\sqrt{1+2x^2}}\bigg)\,dx \end{aligned}
Then let $x\longrightarrow{\frac{1}{x}}$, and we have
$$I(t)=\frac{\pi^2}{12}-\frac{\pi}{4}\arctan\bigg(\frac{1}{t}\bigg)+\int_{0}^{\frac{1}{t}}\frac{\frac{\pi}{2}-\arctan(\sqrt{2+x^2})}{(1+x^2)\sqrt{2+x^2}}\,dx$$
I’m too lazy to go further because it doesn’t look like it’ll do any good unless $t=1$ which of course is Ahmed’s integral. It seems I have hit a dead end. Does anyone know what to do?