Given 2 functions: $f: X \to X$ and $g: X \to X$,
- $f$ and $g$ are one-to-one
- $f$ and $g$ are fixed point free
- composite functions $f \circ g$, $\; g \circ f$, $\; f^2 \equiv f \circ f\;$ and $\;g^2 \equiv g \circ g$ are fixed point free
Is it true that, any composite functions constructed from $f$ and $g$, namely,
$ T \equiv f^{m_k} \circ g^{n_k} \circ f^{m_{k-1}} \circ g^{n_{k-1}} \dots f^{m_1} \circ g^{n_1} \circ g$
($m_i, n_i \in \mathbb{N}_0 \equiv \{0, 1, 2, \dots\}$, $\; i, k \in \mathbb{N} \equiv \{1, 2, 3, \dots\}$)
are also fixed point free?