I need an asymptotic formula/closed form for the sum $$\sum_{r=0}^{n}\frac{(-1)^r\binom{n}{r}\log(n+r+1) }{n+r+1}$$ where $n\in\mathbb{N}$
Denote $$S_n=\sum_{r=0}^{n}\frac{(-1)^r\binom{n}{r}\log(n+r+1) }{n+r+1}$$
$$S_n=\sum_{r=0}^{n}\frac{(-1)^r\binom{n}{r}\log(n+1) }{n+r+1}+ \sum_{r=0}^{n}\frac{(-1)^r\binom{n}{r}\log(1+\frac{r}{n+1}) }{n+r+1} $$
By Wolfram alpha see here $$\sum_{r=0}^{n}\frac{(-1)^r\binom{n}{r}\log(n+1) }{n+r+1}= \frac{\sqrt{\pi}\ n!\ \log (n+1)}{2^{2n+1} \Gamma(n+\frac{3}{2})} $$ $$S_n= \frac{\sqrt{\pi}\ n!\ \log (n+1)}{2^{2n+1} \Gamma(n+\frac{3}{2})} + \sum_{r=0}^{n}\frac{(-1)^r\binom{n}{r}\log(1+\frac{r}{n+1}) }{n+r+1} $$ Since $\frac{r}{n+1}<1$ so by expansion of logarithm, $$S_n= \frac{\sqrt{\pi}\ n!\ \log (n+1)}{2^{2n+1} \Gamma(n+\frac{3}{2})} + \sum_{r=0}^{n}\sum_{m=0}^\infty\frac{(-1)^r\binom{n}{r}(-1)^{m+1}(\frac{r}{n+1})^m }{m(n+r+1)} $$
I could not think of an idea to solve the problem. Any help will be highly appreciated.