Prove or disprove: $f(x) = \begin{cases} \frac{\sin(x)}{x}, & \text{when } x \neq 0,\\ 0, & \text{when } x = 0. \end{cases}$ is of bounded variation on $[0,1]$ and $\sup_{p \in P} V(f,p) =2$.
My try:
Let $p=\{0,x_{1},x_{2},...,x_{n-1},1\}$
$$ \begin{split} V(f,p) &= \sum_{k=1}^{n}|f(x_{k})-f(x_{k-1})| \\ &= \left|\frac{\sin(x_{1})}{x_{1}}\right| + \left|\frac{\sin(x_{2})}{x_{2}}-\frac{\sin(x_{1})}{x_{1}}\right| + \ldots \\ &+ \left|\frac{\sin(x_{n-1})}{x_{n-1}}-\frac{\sin(x_{n-2})}{x_{n-2}}\right| + \left|\sin(1)-\frac{\sin(x_{n-1})}{x_{n-1}}\right| \end{split} $$