I want to see the following identity that is used in the proof of the first version of Bernoulli's theorem without using index notation
$(\mathbf{u} \cdot \mathbf{\nabla})\mathbf{u} = (\nabla \times \mathbf{u}) \times \mathbf{u} + \nabla \left(\frac{\mathbf{|u|}^2}{2} \right)$
To do that I apply the identity $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$ to $\mathbf{u} \times (\nabla \times \mathbf{u})$, so
$(\nabla \times \mathbf{u}) \times \mathbf{u} = - \mathbf{u} \times (\nabla \times \mathbf{u}) = - [\nabla (\mathbf{u} \cdot \mathbf{u}) - \mathbf{u}(\mathbf{u} \cdot \nabla)] = (\mathbf{u} \cdot \nabla) \mathbf{u} - \nabla (\mathbf{|u|}^2)$
Then
$(\mathbf{u} \cdot \nabla)\mathbf{u} = (\nabla \times \mathbf{u}) \times \mathbf{u} + \nabla (\mathbf{|u|}^2)$
Clearly a factor 1/2 is missing in the last term. Where is the error in this reasoning?