Instead, let’s first evaluate the integral $\displaystyle I(a)=\int_0^{\infty} \cos (\pi t) e^{-a t} d t \tag*{} $ where $a>0$. Using Euler identity : $e^{xi}=\cos x+i\sin x$, we have
$\displaystyle \begin{aligned}I(a) & =\int_0^{\infty} \cos (\pi t) e^{-a t} d t \\& =\Re \int_0^{\infty} e^{(\pi i-a) t} d t \\& =\Re\left[\frac{e^{(\pi i-a) t}}{\pi i-a}\right]_0^{\infty} \\& =\Re\left(\frac{1}{a-\pi i}\right) \\& =\frac{a}{a^2+\pi^2}\end{aligned}\tag*{} $
Then differentiating $I(a)$ w.r.t. $a$ yields $\displaystyle I^{\prime}(a)=-\int_0^{+\infty} t \cos (\pi t) e^{-a t} d t= \frac{a^2-\pi^2}{\left(a^2+\pi^2\right)^2}\tag*{} $
Again, differentiating $I’(a)$ w.r.t. $a$ further gives $\displaystyle I^{\prime \prime}(a)=\int_0^{+\infty} t^2 \cos (\pi t) e^{-a t} d t= \frac{2 a\left(a^2-3 \pi^2\right)}{\left(a^2+\pi^2\right)^3}\tag*{} $
In general, for any non-negative integer $n$ and $m>0.$
$\displaystyle \boxed{ \left.\int_0^{+\infty} t^n \cos (\pi t) e^{-m t}dt=(-1)^n \frac{d^n}{d a^n}\left(\frac{a}{a^2+\pi^2}\right)\right|_{a=m}}\tag*{} $
My Question
Is there a closed form for $$\int_0^{+\infty} t^n \cos (\pi t) e^{-m t}dt \textrm{ or } \left.(-1)^n \frac{d^n}{d a^n}\left(\frac{a}{a^2+\pi^2}\right)\right|_{a=m}$$
for any non-negative integer $n$ and $m>0$?
Integrate[t^n Cos[t \[Pi]] Exp[-m t], {t, 0, Infinity}, Assumptions -> m \[Element] PositiveIntegers && n \[Element] PositiveIntegers]. I know you want a proof but sometimes knowing the answer will suggest a proof. – JimB Jul 15 '23 at 01:15