4

Instead, let’s first evaluate the integral $\displaystyle I(a)=\int_0^{\infty} \cos (\pi t) e^{-a t} d t \tag*{} $ where $a>0$. Using Euler identity : $e^{xi}=\cos x+i\sin x$, we have

$\displaystyle \begin{aligned}I(a) & =\int_0^{\infty} \cos (\pi t) e^{-a t} d t \\& =\Re \int_0^{\infty} e^{(\pi i-a) t} d t \\& =\Re\left[\frac{e^{(\pi i-a) t}}{\pi i-a}\right]_0^{\infty} \\& =\Re\left(\frac{1}{a-\pi i}\right) \\& =\frac{a}{a^2+\pi^2}\end{aligned}\tag*{} $

Then differentiating $I(a)$ w.r.t. $a$ yields $\displaystyle I^{\prime}(a)=-\int_0^{+\infty} t \cos (\pi t) e^{-a t} d t= \frac{a^2-\pi^2}{\left(a^2+\pi^2\right)^2}\tag*{} $

Again, differentiating $I’(a)$ w.r.t. $a$ further gives $\displaystyle I^{\prime \prime}(a)=\int_0^{+\infty} t^2 \cos (\pi t) e^{-a t} d t= \frac{2 a\left(a^2-3 \pi^2\right)}{\left(a^2+\pi^2\right)^3}\tag*{} $

In general, for any non-negative integer $n$ and $m>0.$

$\displaystyle \boxed{ \left.\int_0^{+\infty} t^n \cos (\pi t) e^{-m t}dt=(-1)^n \frac{d^n}{d a^n}\left(\frac{a}{a^2+\pi^2}\right)\right|_{a=m}}\tag*{} $

My Question

Is there a closed form for $$\int_0^{+\infty} t^n \cos (\pi t) e^{-m t}dt \textrm{ or } \left.(-1)^n \frac{d^n}{d a^n}\left(\frac{a}{a^2+\pi^2}\right)\right|_{a=m}$$

for any non-negative integer $n$ and $m>0$?

Lai
  • 31,615
  • Using Mathematica on the integral I get $n! \left(m^2+\pi ^2\right)^{-\frac{n}{2}-\frac{1}{2}} \cos \left((n+1) \tan ^{-1}\left(\frac{\pi }{m}\right)\right)$ using Integrate[t^n Cos[t \[Pi]] Exp[-m t], {t, 0, Infinity}, Assumptions -> m \[Element] PositiveIntegers && n \[Element] PositiveIntegers]. I know you want a proof but sometimes knowing the answer will suggest a proof. – JimB Jul 15 '23 at 01:15
  • 3
    Third-line equation for $I(a)$ is equivalent to $\Re \frac{1}{ a-i \pi}$. Differentiate that wrt to $a$. – MathFont Jul 15 '23 at 01:16
  • Thank you very much to the comments above. @MathSensei, you light up my answer, thank you. I write the latest update as another answer now. – Lai Jul 15 '23 at 01:45
  • @JimB. This is true even for non integer $(m,n)$ – Claude Leibovici Jul 15 '23 at 03:34
  • Yes, it is a good news. Thank you very much. – Lai Jul 15 '23 at 04:10
  • @ClaudeLeibovici Thanks! That's good to know. After your comment I removed both assumptions on $n$ and $m$ and got the same result but the with the restrictions that the real part of $n$ needs to be greater than -1 and the real part of $m$ needs to be greater than zero. (I included the previous positive integer assumption because of the way the question was asked and because many times Mathematica is more likely to return a result with such explicit restrictions.) – JimB Jul 15 '23 at 05:37

5 Answers5

7

\begin{align} &\int_0^{+\infty} t^n \cos (\pi t) e^{-a t}dt \\ =&\ (-1)^n \frac{d^n}{d a^n}\left(\frac{a}{a^2+\pi^2}\right) = (-1)^n \frac{d^{n+1}}{d a^{n+1}}\Re \ln(a+i\pi)\\ =&\ \Re \frac{n!}{(a+i\pi)^{n+1}} = \frac{n! \cos[(n+1)\tan^{-1}\frac{\pi}{a}]}{(a^2+\pi^2)^\frac{n+1}{2}} \end{align}

Quanto
  • 120,125
5

Let us define $$I_n(a) = \int_0^\infty t^n e^{-(a+i\pi)t} ~ dt$$ so that your integral equals the real part of $I_m(a)$. By integration by parts, for $n>0$, we get that $$I_n(a) = \frac{n}{a+i\pi}\int_0^\infty t^{n-1}e^{-(a+i\pi)t} ~ dt$$ which, by induction, gives us $$I_n(a) = \frac{n!}{(a+i\pi)^n}I_0(a) = \frac{n!}{(a+i\pi)^{n+1}}$$ We wish to extract the real part of this expression, and writing the denominator in polar coordinates shall help us with this. We have that $$a+i\pi = \sqrt{a^2+\pi^2}\exp\Big(i ~ \arctan\frac{\pi}{a}\Big)$$ hence $$(a+i\pi)^{n+1} = (a^2+\pi^2)^\tfrac{n+1}{2}\exp\Big((n+1)i ~ \arctan\frac{\pi}{a}\Big)$$ and therefore we have $$\color{green}{I_n(a) = \frac{n!}{(a^2+\pi^2)^\tfrac{n+1}{2}}\cos\Big((n+1)\arctan\frac{\pi}{a}}\Big)$$ in agreement with the answer provided by Mathematica in the comments!

Franklin Pezzuti Dyer
  • 40,930
  • 9
  • 80
  • 174
1

Here is a solution using Cauchy's integral theorem that slightly generalizes some of the other answers: $$\boxed{\int_0^{\infty}t^{\alpha-1}\cos(\pi t)e^{-\beta t}\,dt = \frac{\Gamma(\alpha)}{(\beta^2 + \pi^2)^{\frac{\alpha}{2}}}\cos\left(\alpha\tan^{-1}\left(\frac{\pi}{\beta}\right)\right), \quad\alpha, \beta > 0.}$$

Let $s = \sqrt{\beta^2+\pi^2}$ and $f(z) = z^{\alpha-1}e^{-sz}$ for $z\in \mathbb C$. Further, let $C$ be the union of the four counterclockwise paths $$C_1 := \{xe^{i\theta} :x\in [\varepsilon,R]\}, \quad C_2 := \{Re^{ix}:x\in[0,\theta)\}, \quad C_3 := [\varepsilon,R], \quad C_4:=\{\varepsilon e^{ix} : \quad x\in [0,\theta)\}$$ where $\theta = \tan^{-1}(\pi/\beta)$ and $\varepsilon, R > 0$. Then by Cauchy's theorem, $\int_C f(z)\,dz = 0$ for every $\varepsilon, R > 0$, hence taking $\varepsilon \to 0^+$ and $R \to \infty$ yields $$e^{i\alpha\theta}\int_0^{\infty}t^{\alpha-1}e^{(\beta+i\pi)t}\,dt = \int_0^{\infty}t^{\alpha-1}e^{-st}\,dz = \frac{\Gamma(\alpha)}{s^{\alpha}},\quad (*)$$ where we used the facts $$\lim_{R\to \infty}\left|\int_{C_2} f(z)\,dz\right| \leq \lim_{R\to \infty}R^{\alpha}\int_0^{\theta}e^{-sR\cos x}\,dx = 0,$$ $$\lim_{\varepsilon\to 0^+}\left|\int_{C_4} f(z)\,dz\right| \leq \lim_{\varepsilon\to 0^+}\varepsilon^{\alpha}\int_0^{\theta}e^{-s\varepsilon\cos x}\,dx = 0.$$ Taking the real parts in ($*$) yields the desired result.

BBBBBB
  • 1,502
  • 5
  • 14
-1

As @ MathSensei suggested, I can now write a closed form for the integral as $$ \boxed{\int_0^{+\infty} t^n \cos (\pi t) e^{-at}dt =I^{(n)}(a)=\frac{ n !}{\left(a^2+\pi^2\right)^{\frac{n+1}{2}}}\left[\cos (n+1) \tan ^{-1}\left(\frac{\pi}{a}\right)\right]} $$ by differentiating $I(a)=\Re\left(\frac{1}{a-\pi i}\right)$ w.r.t. $a$ by $n$ times as $$ \begin{aligned} I^{(n)}(a) & =\Re\left[\frac{d^n}{d a^n}\left(\frac{1}{a-\pi i}\right)\right] =\Re\left[\frac{(-1)^n n!}{(a-\pi i)^{n+1}}\right] \end{aligned} $$ Expressing the last term in terms of polar form yields $$ \begin{aligned} (a-\pi i)^{n+1} & =\left[\sqrt{a^2+\pi^2} e^{-i \tan ^{-1}\left(\frac{\pi}{a}\right)}\right]^{n+1} \\ & =\left(a^2+\pi^2\right)^{\frac{n+1}{2}} e^{-i(n+1) \tan ^{-1}\left(\frac{\pi}{a}\right)} \end{aligned} $$ and complete the proof that $$ \int_0^{+\infty} t^n \cos (\pi t) e^{-a t} d t=(-1)^n \frac{d^n}{d a^n} \Re\left(\frac{1}{a-\pi i}\right)= \frac{ n !}{\left(a^2+\pi^2\right)^{\frac{n+1}{2}}}\left[\cos (n+1) \tan ^{-1}\left(\frac{\pi}{a}\right)\right] $$

Lai
  • 31,615
-1

Franklin's recursive method can actually be extended to non integer values. In fact, on page 498 of the 11th edition of Table of Intgrals, Series, and Products there appears the very general integral (identity 4) $$\int_0^z x^{a-1}\mathrm e^{-bx}\cos(cx)\mathrm dx=\frac{1}{2}(b+\mathrm ic)^{-a}~\gamma\big(a,(b+\mathrm ic)z\big)+\frac{1}{2}(b-\mathrm ic)^{-a}~\gamma\big(a,(b-\mathrm ic)z\big)$$

Where $\gamma(\cdot,\cdot)$ is a lower incomplete Gamma function.

Taking the special case $z\to\infty$, (identity 6) $a=p+1$, $b=q$, $c=\pi$, we get $$\phi(p,q)=\int_0^\infty t^{p} \cos(\pi t)\mathrm e^{-qt}\mathrm dt \\ =\boxed{\frac{\Gamma(p+1)}{(q^2+\pi^2)^{\frac{p+1}{2}}}\cos\left((p+1)\arctan\frac{\pi}{q}\right)}$$

K.defaoite
  • 13,890