Prove $$\lim\limits_{n\to\infty}x_n=a\quad\iff\quad\lim\limits_{n\to\infty}x_{2n}=a=\lim\limits_{n\to\infty}x_{2n+1}$$
I try to prove this using $\varepsilon-\delta$ definition, there exist N, when n > N ,$|a_n - a|< \varepsilon$
how to prove it from right side to left side?
There is my proof: $\lim\limits_{n\to\infty}x_n=a\iff\lim\limits_{n\to\infty}x_{2n}=a=\lim\limits_{n\to\infty}x_{2n+1}$ $\because\lim\limits_{n\to\infty}x_n=a,\exists N,n>N,|a_n-a|<\varepsilon\implies N=\frac{2}{\varepsilon},|a_{2n}-a|<\varepsilon,N=\frac{2}{\varepsilon}+1,|a_{2n+1}-a|<\varepsilon$ $\therefore\lim\limits_{n\to\infty}x_n=a\iff\lim\limits_{n\to\infty}x_{2n}=a=\lim\limits_{n\to\infty}x_{2n+1}$
$N=max\{2N,2(N+1)\},|a_{2n}-a|<\varepsilon,|a_{2n+1}-a|<\varepsilon\implies |a_n-a|<\varepsilon$
If there is some sub-sequences,a part sub-sequences if converage, can I get a output the the sequence is converage.
Try to prove a sequence all sub-squence is converage that mother sequence is converage can solve it. Right ?