First of all, it results that
$\begin{align}4\cos^2\!18\unicode{176}&=\dfrac{4\cos^3\!18\unicode{176}-3\cos18\unicode{176}}{\cos18\unicode{176}}+3=\dfrac{\cos54\unicode{176}}{\cos18\unicode{176}}+3=\\[3pt]&=\dfrac{\sin36\unicode{176}}{\cos18\unicode{176}}+3=\dfrac{2\sin18\unicode{176}\cos18\unicode{176}}{\cos18\unicode{176}}+3=\\[3pt]&=2\sin18\unicode{176}+3\;\;,\quad\color{blue}{(1)}\end{align}$
$4\sin^2\!18\unicode{176}=1-2\sin18\unicode{176}\,.\;\;\quad\color{blue}{(2)}$
Moreover ,
$\begin{align}4\sin36\unicode{176}\cos18\unicode{176}&=8\sin18\unicode{176}\cos^2\!18\unicode{176}=\\[3pt]&\overset{\color{brown}{(1)}}{=}2\sin18\unicode{176}\big(2\sin18\unicode{176}\!+3\big)=\\[3pt]&=4\sin^2\!18\unicode{176}\!+6\sin18\unicode{176}\overset{\color{brown}{(2)}}{=}4\sin18\unicode{176}+1=\\[3pt]&=\sqrt{\big(4\sin18\unicode{176}\!+1\big)^{\!2}}=\\[3pt]&=\sqrt{16\sin^2\!18\unicode{176}+8\sin18\unicode{176}+1}=\\[3pt]&\overset{\color{brown}{(2)}}{=}\sqrt{4-8\sin18\unicode{176}+8\sin18\unicode{176}+1}=\\[3pt]&=\sqrt5\;.\end{align}$