This Carmichaelnumber with $39$ digits $$145410193191244273054310497291961592961$$ is not pandigital , the digit $8$ is missing.
What is the largest known Carmichael-number not being pandigital (with at least one digit missing in the decimal expansion) ?
294555313376703770324072440550486has $101$ digits and is a Carmichael number (it misses the digit $7$). Another $101$-digit example for n can be constructed in the same way with k equal to202826390084431567861373760569275, missing the digit $6$. – jorisperrenet Jun 30 '23 at 07:48k=901966164698621693452028481838495gives an $102$-digit $n$ with the digit $6$ missing. – jorisperrenet Jun 30 '23 at 07:49k=77827388506854892505748442714276512918005gives a $126$-digit Carmichael number with missing digit $2$. – jorisperrenet Jun 30 '23 at 13:11