2

Take a look at the simple fractional differential equation (FDE Initial Value Problem): $$_0D_x^{\frac{1}{2}}y(x)+2y(x)=0,~~x>0,~\text{and}~_0D_x^{-\frac{1}{2}}y(0)=1.$$ I solved the IVP using Laplace transform to get the exact solution:$$y(x)=x^{-\frac{1}{2}}E_{\frac{1}{2},\frac{1}{2}}(-2x^\frac{1}{2}),$$ where, ${\displaystyle E_{\alpha ,\beta }(z)=\sum _{k=0}^{\infty }{\frac {z^{k}}{\Gamma (\alpha k+\beta )}},}$ the Mittag-Leffler function.

As a student of numerical FDE, I am incredibly interested in comparing my numerical solution, and I tried to approximate $$_0D_x^{\frac{1}{2}}y(x)=\frac{d}{dx}\frac{1}{\sqrt \pi} \int_0^x(x-t)^{-\frac{1}{2}}y(t)dt=\frac{1}{\sqrt \pi}\frac{d}{dx}U(x),$$ by the central difference to follow, $$\frac{1}{\sqrt \pi}\frac{U(x_{i+1})-U(x_{i-1})}{2 \Delta x}+2y(x_i)=0,~\Delta x=x_{i+1}-x_i,$$ $$\Rightarrow \frac{1}{\sqrt \pi} \frac{\int_0^{x_{i+1}}(x_{i+1}-t)^{-\frac{1}{2}}y(t)dt-\int_0^{x_{i}}(x_{i}-t)^{-\frac{1}{2}}y(t)dt}{2\Delta x}+2y(x_i)=0,$$ $$\Rightarrow \int_0^{x_{i+1}}(x_{i+1}-t)^{-\frac{1}{2}}y(t)dt-\int_0^{x_{i}}(x_{i}-t)^{-\frac{1}{2}}y(t)dt+4\sqrt \pi\Delta x y(x_i)=0,$$ In the first look, I excited to club these integrals but it was a disaster due to the difference in the indices. Moreover, I am pretty scared about incorporating the initial condition. How can we proceed this central difference approximation.

Thanks in advance for any sort of help in the numerical analysis.

The Art Of Repetition
  • 2,428
  • 1
  • 7
  • 34
Messi Lio
  • 796

0 Answers0