Let $X$ be a $\sigma$-compact metric space and let $\mathcal{A}\equiv\mathrm{span}\{p_\alpha\mid \alpha \in I\}$ ($I$ countable, $(p_\alpha)$ linearly independent) be a subalgebra of $C(X)$ that separates points and contains the constants. Let further $\varphi : X\rightarrow \mathbb{R}$ be a bounded continuous function on $X$.
Then there is an ascending sequence $(K_n)$ of compacts with $X=\bigcup_n K_n$, and Stone-Weierstrass implies the existence of $(f_n)\subset\mathcal{A}$ such that $\|\varphi - f_n\|_{\infty; K_n} \leq 1/n$ for each $n$. Write $f_n = \sum_{\alpha\in I} c_{\alpha, n}p_\alpha$ and $\|(c_{\alpha,n})\|:=\big(\sum_{\alpha\in I} c_{\alpha,n}^2\big)^{1/2}$ (coefficient norm).
Question: Can $(f_n)$ be chosen such that the sequence $(\mathfrak{c}_n)_n:=(\|(c_{\alpha,n})\|)_n$ is bounded?