From the answer to the question Scalar product of a deterministic function with Gaussian white noise, we know that
$$
C(s,t) = \mathbb{E}[\langle \phi(s-\cdot), W\rangle\langle \phi(t-\cdot), W\rangle]
= \int \phi(s-x)\phi(t-x)dx
$$
In the calculation below we want to move the $x$ into a position where we can easily integrate it out. Specifically, we try to collect the terms for the Gaussian density
$$\begin{aligned}
\phi(s-x)\phi(t-x)
&= \exp\Bigl(-\frac{\|s-x\|^2 + \|t-x\|^2}{2\beta}\Bigr)\\
&= \exp\Bigl(-\frac{\|s\|^2 + \|t\|^2 - 2\langle t+s, x\rangle + 2\|x\|^2}{2\beta}\Bigr)\\
&= \exp\Bigl(-\frac{
\tfrac12\|s - t\|^2 +\tfrac12\|s+t\|^2 - 2\langle t+s, x\rangle + 2\|x\|^2
}{2\beta}\Bigr)\\
&= \exp\Bigl(
-\frac{\tfrac12\|s - t\|^2
+ \bigl\|\frac{s+t}{\sqrt{2}} - \sqrt{2} x\bigr\|^2 }{2\beta}
\Bigr)\\
&= \exp\Bigl(
-\frac{\tfrac12\|s - t\|^2}{2\beta}\Bigr)
\exp\Bigl(-\frac{2\bigl\|\frac{s+t}{2} - x\bigr\|^2 }{2\beta}
\Bigr)
\end{aligned}
$$
This finally implies for $s,t\in \mathbb R^d$
$$
C(s,t) = \exp\bigl(-\tfrac1{4\beta}\|s - t\|^2\bigr)
\underbrace{\int\exp\Bigl(-\frac{\bigl\|\frac{s+t}{2} - x\bigr\|^2 }{2(\beta/2)}\Bigr) dx}_{=\sqrt{(\beta\pi)^d}} = (\beta \pi)^{d/2} \exp\bigl(-\tfrac1{4\beta}\|s - t\|^2\bigr)
$$
To obtain the solution to the integral note that, as a density of
the multivariate normal distribution integrates to $1$ by definition of a density, we have for any positive definite $\Sigma$ and any $\mu$
$$
(2\pi)^{-d/2}(\det(\Sigma))^{-1/2} \int \exp\Bigl( - \tfrac12 (x-\mu)^T \Sigma^{-1} (x-\mu)\Bigr)dx = 1
$$
Select the covariance matrix to be the scaled identity $\Sigma = \frac\beta2 \mathbb I$ and $\mu=\frac{s+t}{2}$ and the integral coincides with the one above, and due to
$$
\det(\Sigma) = \det(\tfrac\beta2 \mathbb I) = (\tfrac\beta2)^d
$$ the "$2$" cancels.