Problem: Show that the number $11...11$ with $3^n$ digits is divisible by $3^n$.
My Attempt I tried solving this problem on base 3. It is easy to see that
$$3^n = 100....00$$ (upto $n$ 0's)
And $$ 11...11 = a_0 + 3a_1 + 3^2a_2 + .... 3^ma_m $$ if the the claim is correct then that would would imply that $11..11$ in base 3 would end with $3^n$ zeroes then that would mean that, $$ a_1=a_2=a_3...=a_k=0$$where k= $3^n$ I tried proving this but wasn't able to, subsequesntly I also tried to prove that a number is divisible by $3^n$ if it's sum is a multiple of $3^n$. Any insight on solving this?
(PS I do know this already has been posted on MSE but I wanted to see if I could prove this using my method)