Suppose an investor has a preference represented by the relation $\succ$ for which there is a von-Neumann Morgenstern representation with the utility function $u$: $$u(x)=\begin{cases} x & x\ge 0 \\ \lambda x &x<0 \end{cases}$$ Determine all values $\lambda$ for which $\mu \succ 0 \succ \upsilon$, where $\upsilon=\frac 12 \delta_{\{-100\}}+\frac 12 \delta_{\{150\}}$ and $\mu=\frac 12 \delta_{\{-100\}}+\frac 12 \delta_{\{200\}}$.
My try: $$\mu \succ 0 \succ \upsilon$$ $$\frac 12 \delta_{\{-100\}}+\frac 12 \delta_{\{200\}} \succ 0 \succ \frac 12 \delta_{\{-100\}}+\frac 12 \delta_{\{150\}}$$ We subtract $\frac 12 \delta_{\{-100\}}$: $$\frac 12 \delta_{\{200\}} \succ -\frac 12 \delta_{\{-100\}} \succ \frac 12 \delta_{\{150\}}$$ We substitute the function $u$: $$200 \succ 100\lambda \succ 150$$ $$2 \succ \lambda \succ 1,5$$
My asks:
First of all, I don't know if it's allowed to perform such transformations - I treated the relation $\succ$ as a regular $>$. If this is correct, what theorems should I rely on to make the task accurate? If the way is incorrect, how else can I approach the task?