0

A Boolean least-squares can be formulated as follows

\begin{array}{ll} \text{minimize} & \operatorname{tr}(A^TAX) - 2b^TAx + b^Tb\\ \text{subject to} & X = xx^T\\ & X_{ii} = 1\end{array}

which can be further formulated as

$$\begin{align*} &\operatorname{trace}(A^TAX) - 2b^TAx + b^Tb\\ =&\operatorname{trace}\left[(x^TA^T-b^T)(Ax - b)\right]\\ =&\operatorname{trace}\left[\pmatrix{x^T&1}\pmatrix{A^T\\ -b^T}\pmatrix{A&-b}\pmatrix{x\\ 1}\right]\\ =&\operatorname{trace}\left[\pmatrix{A^T\\ -b^T}\pmatrix{A&-b}\pmatrix{x\\ 1}\pmatrix{x^T&1}\right]\\ =&\operatorname{trace}\left[ \underbrace{\pmatrix{A^TA&-A^Tb\\ -b^TA&b^Tb}}_B \underbrace{\pmatrix{X&x\\ x^T&1}}_Y\right]. \end{align*}$$

and we require the $Y \succeq 0$ (I just omit other constraints here for simplicity). So, is the expression of $X\succeq xx^T$ equvilant to the expression of $Y\succeq0$? As I saw this equivalence in Professor Boyd's convex optimization PPT, but I don't how to prove it.

Reference

  1. Convex Optimization [PDF].
tyrela
  • 363

1 Answers1

0

Suppose $\begin{bmatrix} A & v \\ v^T & 1 \end{bmatrix} \ge 0$.

Then $\begin{bmatrix} x \\ \alpha \end{bmatrix}^T \begin{bmatrix} A & v \\ v^T & 1 \end{bmatrix} \begin{bmatrix} x \\ \alpha \end{bmatrix} = x^T Ax +2 \alpha x^Tv + \alpha^2 \ge 0$. Choose $\alpha = - x^T v$ to obtain $A \ge v v^T$.

For the other direction, suppose $A \ge v v^T$, then $x^T Ax +2 \alpha x^Tv + \alpha^2 \ge (x^Tv)^2+ 2 \alpha x^Tv + \alpha^2 \ge (x^Tv)^2 = (x^T v + \alpha)^2 \ge 0$.

copper.hat
  • 178,207