You have $\nu = |\mu| = \mu^{+} + \mu^{-}$ by definition, which is a sum of mutually singular positive measures. Let $P \perp N$ be a Hahn decomposition for $\mu$, where $P$ and $N$ are disjoint positive and negative sets respectively, so $\mu^{+}(N) = 0$ and $\mu^{-}(P) = 0$.
In other word, $\chi_{P} d |\mu| = d \mu^{+}$ and $\chi_{N} d |\mu| = d \mu^{-}$.
Clearly $f\chi_{P} + f\chi_{N} = f$, and $f^{+} = f^{+} \chi_{P} + f^{+} \chi_{N}$, $f^{-} = f^{-} \chi_{P} + f^{-} \chi_{N}$.
By definition of integral, $\int f d |\mu| = \int f^{+} d |\mu| - \int f^{-} d |\mu| = (\int f^{+} \chi_{P} d|\mu| + f^{+} \chi_{N} d|\mu|) - (\int f^{-} \chi_{P} d|\mu| + f^{-} \chi_{N} d|\mu|) = (\int f^{+} d \mu^{+} + \int f^{+} d \mu^{-}) - (\int f^{-} d \mu^{+} + \int f^{-} d \mu^{-}) = \int f d \mu^{+} + \int f d \mu^{-}$.
$\textbf{Edit}$: I will outline an approach using simple functions that will work.
Assume you have proved this for simple functions.
Write $f = f^{+} - f^{-}$, then $\int f d |\mu| = \int f^{+} d |\mu| - \int f^{-} d |\mu|$.
Let $\phi_n^{+} \uparrow f^{+}$ and $\phi_n^{-} \uparrow f^{-}$ be simple functions monotonically increasing to $f^{+}$ and $f^{-}$ respectively.
Then $ \lim_{n} \int \phi_n^{+} d |\mu| = \int f^{+} d |\mu|$ by the monotone convergence theorem or by definition of integral.
So $\lim_{n} \int \phi_n^{+} d |\mu| = \lim_{n} \int \phi_n^{+} d \mu^{+} + \int \phi_n^{-} d \mu^{-} = \int f^{+} d \mu^{+} + \int f^{+} d \mu^{-}$ again by the monotone convergence theorem or the definition of integral and the hypothesis that the conclusion holds for simple functions.
Do the same thing with $\phi_n^{-}$ and $f^{-}$, and put the results together to get your desired conclusion.
$\textbf{Edit 2}$ : The below response should resolve the matter that troubles you discussed in the comments (namely on splitting the supremum).
Let $ f \geq 0$ and assume you have the desired conclusion for simple functions. Denote simple functions by $\mathcal{E}$.
Then $\int f d |\mu| = \sup \{ \int \phi d |\mu| : 0 \leq \phi \leq f , \phi \in \mathcal{E} \} = \sup \{ \int \phi d \mu^{+} + \int \phi d \mu^{-} : 0 \leq \phi \leq f , \phi \in \mathcal{E} \}$.
Clearly $\sup \{ \int \phi d \mu^{+} + \int \phi d \mu^{-} : 0 \leq \phi \leq f , \phi \in \mathcal{E} \} \leq \sup \{ \int \phi d \mu^{+} : 0 \leq \phi \leq f , \phi \in \mathcal{E} \} + \sup \{ \int \phi d \mu^{-} : 0 \leq \phi \leq f , \phi \in \mathcal{E} \} = \int f d\mu^{+} + \int f d\mu^{-}$.
To show the other side, take $0 \leq \phi,\psi \in \mathcal{E} \leq f $ with $\int \phi d \mu^{+} $ and $\int \psi d \mu^{-}$ both within $\frac{\epsilon}{2}$ away from $\int f d \mu^{+}$ and $\int f d \mu^{-}$ respectively.
Then consider $0 \leq \phi \chi_{P} + \psi \chi_{N} \in \mathcal{E} \leq f $ where $P,N$ are as in my post (they form a Hahn decomposition for $\mu$).
Clearly $\int (\phi \chi_{P} + \psi \chi_{N}) d |\mu| = \int \phi d \mu^{+} + \int \psi d \mu^{-} $, and since $(\phi \chi_{P} + \psi \chi_{N})$ is simple, $\int (\phi \chi_{P} + \psi \chi_{N}) d |\mu| \leq \int f d |\mu|$.
But since $\int \phi d \mu^{+} $ and $\int \psi d \mu^{-}$ both within $\frac{\epsilon}{2}$ away from $\int f d \mu^{+}$ and $\int f d \mu^{-}$ respectively, we have that $\int f d\mu^{+} + \int f d\mu^{-} - \epsilon \leq \int f d|\mu|$.
Let $\epsilon \downarrow 0$ to recover $\int f d\mu^{+} + \int f d\mu^{-} \leq \int f d |\mu|$.
This gives the other side.