Let $\operatorname{ns}\left(z,k\right)$ be one of the Jacobi's elliptic functions, and $K(k)$ the complete elliptic integral of the first kind. It's well-known that $\operatorname{ns}(mK(k),k)$ where $m\in\mathbb{Q}/2\mathbb{Z}$ is always an algebraic function with respect to $k$. With its addition formula, $$ \operatorname{ns}\left ( u+v ,k\right )\operatorname{ns} \left ( u-v,k \right ) =\frac{k^2-\operatorname{ns}(u,k)^2\operatorname{ns}(v,k)^2}{ \operatorname{ns}(u,k)^2-\operatorname{ns}(v,k)^2}, $$ place $(u,v)=\left ( \frac{2}{3}K(k), \frac{1}{3}K(k) \right )$ and $(u,v)=\left ( K(k), \frac13K(k) \right )$ respectively, giving \begin{aligned} &\operatorname{ns}\left ( \frac{2}{3}K(k),k \right )^2 =\frac{k^2-\operatorname{ns}\left ( \frac{1}{3}K(k),k \right )^2 }{ 1-\operatorname{ns}\left ( \frac{1}{3}K(k),k \right )^2} \\ &\operatorname{ns}\left ( \frac{1}{3}K(k),k \right ) =\frac{k^2-\operatorname{ns}\left ( \frac{2}{3}K(k),k \right )^2\operatorname{ns}\left ( \frac{1}{3}K(k),k \right )^2}{ \operatorname{ns}\left ( \frac{2}{3}K(k),k \right )^2-\operatorname{ns}\left ( \frac{1}{3}K(k),k \right )^2} \end{aligned} The two equations are linear independent with each other, producing exact expressions of $\operatorname{ns}\left ( \frac{1}{3}K(k),k \right ),\operatorname{ns}\left ( \frac{2}{3}K(k),k \right )$. But the nasty appearances make it hard to do for some calculation. So is there a concise algebraic relation between the two? Thanks for your help.
My ultimate goal is to develop another way to calculate some algebraic number $k_n$ which satisfying $K^\prime(k)/K(k)=\sqrt{n}$. And $n=1,2,3,4,5,6,8,9,10,12,16,18...$ can be evaluated, whereas $k_{7},k_{15}...$ can't because the restriction of Wolfram Cloud(I use it to solve equations). Basic ideas are recorded here. It signifies the need of relations among $\operatorname{ns}\left (mK(k),k \right )$ having the same denominator.