In my other question we derived a "closed form expression" for the spectral moments of Wishart random matrices (under the assumption that the underlying correlation matrix is an identity). Clearly the spectral moment of order zero has to be equal to the normalization of the eigenvalue distribution, i.e. it has to be a unity. Now, by taking $N=2,3,4$ in the formulae in question and using the normalization constraint we have obtained the following two puzzling identities below.
Let us take $a \in {\mathbb N}_+$. Then the following identities hold true:
\begin{eqnarray} &&\frac{\, _2F_1(2,-a;-2 a;2)}{2 a+1} = 1\\ &&\hline \\ && \frac{2^{2 a+2} 3^{-3 a-1} \Gamma (3 a+1) }{\Gamma (a+2) \Gamma (2 a+2)} \cdot \sum _{K_1=0}^a \sum _{K_2=K_1}^{2 a} \frac{2^{K_1-K_2} 3^{K_2} (-2 a)_{K_2} (-a)_{K_1} }{(-3 a)_{K_2} (-2 a)_{K_1}} \cdot \\ && \left(K_1+1\right) \left(-K_1+K_2+1\right) \left(\frac{1}{4} \left(K_1+2\right) +\frac{1}{8} \left(-K_1+K_2+2\right) \right) =1 \\ &&\hline \\ && \frac{2^{4 a+5-8 a-7} 3^{-4} (4 a)! }{\Gamma (2 a+2) \Gamma (2 a+4)} \cdot \sum\limits_{K_1,0}^{a} \sum\limits_{K_2,0}^{2 a} \sum\limits_{K_3,0}^{3 a} % \frac{2^{K_1-K_2} 3^{K_2-K_3} 4^{K_3} (-3 a)_{K_3} (-2 a)_{K_2} (-a)_{K_1}}{(-4 a)_{K_3} (-3 a)_{K_2} (-2 a)_{K_1}} \\ && % \left(K_1+1\right) \left(-K_1+K_2+1\right) \left(-K_2+K_3+1\right) \left(-9 K_1^3-9 \left(K_2+15\right) K_1^2+\left(K_2^2+\left(4 K_3-2\right) K_2+4 K_3 \left(K_3+20\right)-90\right) K_1+K_2^3+49 K_2^2+4 \left(K_2+6\right) K_3^2+618 K_2+4 \left(K_2+6\right) \left(K_2+20\right) K_3+1944\right) = 1 % \tag{1} \end{eqnarray} where $x_n := x (x+1) \cdot \cdots \cdot (x+n-1) $ is the upper Pochhammer symbol. The second identity above can be expressed in terms of Kampe de Ferriet functions.
As always, the code below verifies the identities above. We have:
In[622]:= (*NN=2*)
Table[1/(2 aa + 1) Hypergeometric2F1[2, -aa, -2 aa, 2], {aa, 0, 20}]
(*NN=3*)
Table[(2^(2 + 2 aa) 3^(-1 - 3 aa) Gamma[1 + 3 aa])/(Gamma[
2 + aa] Gamma[2 + 2 aa]) (Sum[
uPch[-aa, K1]/uPch[-2 aa, K1] uPch[-2 aa, K2]/uPch[-3 aa, K2] 2^
K1 (3/2)^
K2 (uPch[K1 + 1, 2] uPch[K2 - K1 + 1, 1]/4 +
uPch[K1 + 1, 1] uPch[K2 - K1 + 1, 2]/8), {K1, 0, aa}, {K2, K1,
2 aa}]), {aa, 0, 20}]
(*NN=4*)
NN = 4;
Table[(NN aa)!/(32 Gamma[2 + 2 aa] Gamma[4 + 2 aa]) 2^(10 + 4 aa) Sum[
(Product[uPch[-(j + 0) aa, K[j]]/
uPch[-(j + 1) aa, K[j]], {j, 1, NN - 1}] Product[1/xi^(
K[xi] - K[xi - 1]), {xi, 1, NN}] /. {K[0] :> 0,
K[NN] :> NN aa}) 1/
10368 (1 + K[1]) (1 - K[1] + K[2]) (1 - K[2] + K[3]) (1944 -
9 K[1]^3 + 618 K[2] + 49 K[2]^2 + K[2]^3 -
9 K[1]^2 (15 + K[2]) + 4 (6 + K[2]) (20 + K[2]) K[3] +
4 (6 + K[2]) K[3]^2 +
K[1] (-90 + K[2]^2 + 4 K[3] (20 + K[3]) + K[2] (-2 + 4 K[3])))
, Evaluate[
Sequence @@
Table[{K[xi], If[xi == 1, 0, K[xi - 1]], xi aa}, {xi, 1,
NN - 1}]]], {aa, 0, 20}]
Out[622]= {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1}
Out[623]= {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1}
Out[625]= {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1}
My question is then how do we go about proving the identities in $(1)$?