I'm trying to understand this proof for why $\log z$ is not continuous:
\begin{align} \lim_{n \to \infty} \log \left(-1-\frac{i}{n}\right) & = \lim_{n\to\infty}\left(\log\left|-1-\frac{i}{n}\right|+i \arg\left(-1-\frac{i}{n}\right)\right) \\ & =\log|-1|+i(-\pi) \\& = -i\pi,\end{align}
whereas
$$\log(-1)=\log|-1| + i\arg(-1)=i\pi \neq -i\pi.$$
I don't understand why
$$\lim_{n\to\infty}i\arg\left(-1-\frac{i}{n}\right) = -i\pi \neq i\arg(-1) = i\pi,$$
but
$$\lim_{n\to\infty}\log\left|-1-\frac{i}{n}\right| = \log|-1| = 0.$$
The idea makes sense: since the limit is tending towards $-1$ from the negative axis, you'll get $-i\pi$, which is not equal to $i\pi$. But I don't get the notation.
Isn't
$$\lim_{n\to\infty}i\arg\left(-1-\frac{i}{n}\right) = i\arg(-1) = i\pi?$$