Note that $$\sin^2 \frac{k\pi}{2N}=\frac{1-\cos\frac{k\pi}{N}}2,~~~\cos^2 \frac{k\pi}{2N}=\frac{1+\cos\frac{k\pi}{N}}2$$
we have:
$$\cos\frac{k\pi}N=-\cos\frac{(N-k)\pi}N$$
hence,
$$1-\cos\frac{k\pi}N=1+\cos\frac{(N-k)\pi}N$$
From symmetry, we have
$$\prod_{k=1}^{N-1} \left( 1-\cos\frac{k\pi}{N} \right) =\prod_{k=1}^{N-1} \left( 1+\cos\frac{(N-k)\pi}N\right)= \prod_{k=1}^{N-1} \left( 1+\cos\frac{k\pi}{N} \right)$$
Therefore, we get
$$\prod_{k=1}^{N-1} \left( 4 \sin^2 \frac{k\pi}{2N} \right) = \prod_{k=1}^{N-1} \left( 4 \cos^2 \frac{k\pi}{2N} \right)=P$$
Next, multiply them, and use $\sin2\theta=2\sin\theta\cos\theta$
$$P^2=\prod_{k=1}^{N-1} \left( 4 \sin^2 \frac{k\pi}{2N} \right) \prod_{k=1}^{N-1} \left( 4 \cos^2 \frac{k\pi}{2N} \right)=\prod_{k=1}^{N-1} \left( 4 \sin^2 \frac{k\pi}{N} \right)=\left[\prod_{k=1}^{N-1} \left( 2 \sin \frac{k\pi}{N} \right)\right]^2$$
We know: $\displaystyle \prod_{k=1}^{N-1}\left(2\sin\frac{k \pi}{N} \right)= N$, hence
$$P^2=N^2$$
Finally,
$$\boxed{\prod_{k=1}^{N-1} \left( 4 \sin^2 \frac{k\pi}{2N} \right) = \prod_{k=1}^{N-1} \left( 4 \cos^2 \frac{k\pi}{2N} \right)=N}$$