Without using Glasser's Master Theorem.
The core is to compute $$F(b)=\int_0^\infty e^{-x^2-\frac{b^2}{x^2}}~dx=\int_0^\infty e^{-\left(x-\frac{b}{x}\right)^2-2b}dx$$
Without loss of generality, let $b\ge0$, we get
$$e^{2b}F(b)=\int_0^\infty e^{-\left(x-\frac{b}{x}\right)^2}dx\tag{1}$$
Take derivative
$$F'(b)=\int_0^\infty e^{x^2-\frac{b^2}{x^2}}\cdot\frac{-2b}{x^2}~dx=2\int_0^\infty e^{x^2-\frac{b^2}{x^2}}~d\left(\frac{b}{x}\right)=2\int_0^\infty e^{-\left(x-\frac{b}x\right)^2-2b}~~d\left(\frac{b}{x}\right)$$
we get
$$\frac{1}2e^{2b}F'(b)=\int_0^\infty e^{-\left(x-\frac{b}x\right)^2}~d\left(\frac{b}{x}\right)\tag{2}$$
Let $(1)-(2)$
$$e^{2b}F-\frac{1}2e^{2b}F'=\int_0^\infty e^{-\left(x-\frac{b}x\right)^2}d\left(x-\frac{b}{x}\right)$$
Let $u=x-\frac{b}{x}$
$$e^{2b}F-\frac{1}2e^{2b}F'=\int_{-\infty}^\infty e^{-u^2}du=\sqrt\pi$$
So we get a first order differential equation
$$F-\frac{1}2F'=\sqrt\pi e^{-2b},~~~~F(0)=\frac{\sqrt\pi}{2}$$
So we get
$$\boxed{\int_0^\infty e^{-x^2-\frac{b^2}{x^2}}~dx=F(b)=\frac{\sqrt\pi}{2}e^{-2b},~~~b\ge0}$$
Finally,
$$I=\int_{-\infty}^{\infty} e^{-k^{2} t^{2}-\frac{z^2}{4t^{2}}} dt=2\int_0^{\infty} e^{-k^{2} t^{2}-\frac{z^2}{4t^{2}}} dt$$
Let $x=|k|t$
$$I=\frac{2}{|k|}\int_0^{\infty} e^{-x^{2}-\frac{z^2k^2/4}{x^{2}}} dx$$
Plut in $b=\frac{|zk|}2$
$$\boxed{I=\frac{\sqrt\pi}{|k|}e^{-|zk|}}$$