$$\forall \epsilon>0, \exists \delta>0, \forall |x-1|<\delta,\Rightarrow f(1)-\epsilon<f(x)<f(1)+\epsilon\tag{1}$$
$$\int_0^1 x^n f(x) dx=\int_0^{1-\delta/2}x^n f(x) dx+\int^1_{1-\delta/2}x^n f(x) dx$$
Since $f$ is continous on $[0, 1-\delta/2]$, hence it attains maxima $M$ and minima $m$.
$$m\int_0^{1-\delta/2}x^n dx\le \int_0^{1-\delta/2}x^n f(x) dx\le M\int_0^{1-\delta/2}x^n dx$$
and
$$\lim_{n\to\infty} ~(n+1)\int_0^{1-\delta/2}x^n dx=\lim_{n\to\infty}\left(1-\frac{\delta}2\right)^{n+1}=0$$
So by squeeze theorem,
$$\lim_{n\to\infty} ~(n+1)\int_0^{1-\delta/2}x^n f(x) dx=0$$
Therefore,
$$\lim_{n\to\infty} ~(n+1)\int_0^1 x^n f(x) dx=\lim_{n\to\infty} ~(n+1)\int^1_{1-\delta/2}x^n f(x) dx=L_2$$
By (1), we have
$$(f(1)-\epsilon)\lim_{n\to\infty} ~(n+1)\int^1_{1-\delta/2}x^n dx\le L_2\le (f(1)+\epsilon)\lim_{n\to\infty} ~(n+1)\int^1_{1-\delta/2}x^n dx$$
Compute the limit,
$$\lim_{n\to\infty} ~(n+1)\int^1_{1-\delta/2}x^n dx=\lim_{n\to\infty} ~1-\left(1-\frac{\delta}2\right)^{n+1}=1$$
Therefore,
$$f(1)-\epsilon\le L_2\le f(1)+\epsilon$$
Since $\epsilon $ is arbitrary, we get $$\lim_{n\to\infty} ~(n+1)\int_0^1 x^n f(x) dx=f(1)$$