Let, $X_i~(i.i.d.)$ Bernoulli ($\lambda/n$), $n\geq\lambda\geq0. $
$Y_i~(i.i.d.)$ Poisson ($\lambda/n$), ${X_i}$ and ${Y_i} $ are independent.
Let,$\sum_{i=1}^{n^2}X_i=T_n$ and $\sum_{i=1}^{n^2}Y_i=S_n$ (say).
Find the limiting distribution of $T_n/S_n$ as $n\rightarrow \infty. $
My attempt:
$E(X_i) =\lambda/n $ and $Var(X_i) =\lambda/n(1-\lambda/n)$
Also $E(Y_i) =\lambda/n=Var(Y_i) $
Thus $E(T_n) =n\lambda=E(s_n) $ And $Var(T_n) =\lambda(n-\lambda) $ $Var(S_n) =n\lambda$ Then I can't proceed further. Please suggest something....