The exercise requires me to show, with the help of truth tables, that if $P\rightarrow Q$ and $Q\rightarrow R$ are true, then $P\rightarrow R$ is true
Since we are reasoning completely abstractly, the exercise is essentially asking you to show that $$\Big((P\rightarrow Q)\land(Q\rightarrow R)\Big)\boldsymbol\to (P\rightarrow R)\tag1$$ is a tautology. Our previous discussion has established that this corresponds to its truth table having entirely T under its main connective.
\begin{array}{ccc|c@{}c@{}c@{}ccc@{}ccc@{}ccc@{}c@{}ccc@{}ccc@{}c@{}c}
P&Q&R&(&P&\rightarrow&Q&)&\land&(&Q&\rightarrow&R&)&\rightarrow&(&P&\rightarrow&R&)\\\hline
1&1&1&&1&1&1&&1&&1&1&1&&\mathbf{1}&&1&1&1&\\
1&1&0&&1&1&1&&0&&1&0&0&&\mathbf{1}&&1&0&0&\\
1&0&1&&1&0&0&&0&&0&1&1&&\mathbf{1}&&1&1&1&\\
1&0&0&&1&0&0&&0&&0&1&0&&\mathbf{1}&&1&0&0&\\
0&1&1&&0&1&1&&1&&1&1&1&&\mathbf{1}&&0&1&1&\\
0&1&0&&0&1&1&&0&&1&0&0&&\mathbf{1}&&0&1&0&\\
0&0&1&&0&1&0&&1&&0&1&1&&\mathbf{1}&&0&1&1&\\
0&0&0&&0&1&0&&1&&0&1&0&&\mathbf{1}&&0&1&0&
\end{array}
But there are also instances where $P\rightarrow R$ is true, and $P\rightarrow Q$ and $Q\rightarrow R$ are false.
Sure: in these rows, sentence $(1)$ is indeed T.
If A is false and B true, then can "if A, then B" be true?
Yes: in this row (in fact, in every row where hypothesis A is false), we say that the implication "if A, then B" is vacuously true.
In the same row (A is false and B true), the bi-implication "A is equivalent to B", on the other hand, is certainly false.