Using the propertieds og logarithms, what you want to compute with high accuracy is
$$\Delta(a)=a-\log_{10}\left(10^a-1\right)=-\frac{\log_e \left(1-10^{-a}\right)}{\log_e (10)}$$
Let
$$1-10^{-a}=\frac {1+t}{1-t} \implies t=t(a)=\frac{1}{1-2\times 10^a}$$ and use $$\log \left(\frac{1+t}{1-t}\right)=2\sum_{n=0}^\infty \frac {t^{2n+1}}{2n+1}$$
Truncate the summation to some order and make the series as a $[2k+1,2k]$ Padé approximant $P_k$ such as
$$P_2(a)=2\, t\,\, \frac{1-\frac{7 }{9}t^2+\frac{64 }{945}t^4 } { 1-\frac{10 }{9}t^2+\frac{5 }{21}t^4}$$
So, I shall compute for large numbers the absolute error
$$\Phi(a)= \Delta(a)+\frac {P_2(a)}{\log_e(10)}$$
Computing a few numbers
$$\left(
\begin{array}{cc}
a & \Phi(a) \\
5 & 6.22\times 10^{-62} \\
10 & 6.22\times 10^{-117} \\
15 & 6.22\times 10^{-172} \\
20 & 6.22\times 10^{-227} \\
25 & 6.22\times 10^{-282} \\
30 & 6.22\times 10^{-337} \\
35 & 6.22\times 10^{-392} \\
40 & 6.22\times 10^{-447} \\
45 & 6.22\times 10^{-502} \\
50 & 6.22\times 10^{-557} \\
\end{array}
\right)$$
We can do much better using $P_{n>2}$