We summarize our results here. We'll firstly put forth several means to evaluate the integral and then make a list of all the known results.
For $\Re(a,b)>0$, we have the following hypergeometric representations, $$
\begin{aligned}
I(a,b)
&=\frac{\pi}{2} \frac{\Gamma\left ( a \right )
\Gamma\left ( b \right ) }{\Gamma\left (a+b \right )}
\,_3F_2\left ( \frac{1}2,\frac12,a;a+b,1;1 \right ),\\&= \frac{\pi}{2} \frac{\Gamma\left ( b \right )^2}{\Gamma\left (b+\frac12 \right )^2}
\,_3F_2\left ( b,b,1-a;b+\frac12,b+\frac12;1 \right ).
\end{aligned}
$$
The first is by definition $K(\sqrt{x} )
=\frac{\pi}{2} \,_2F_1\left ( \frac12,\frac12;1;x \right )$ and for the second we use the evaluation of $I(1,b)$. Now that the $\,_3F_2$ doesn't have a general formula, however, we observe two special cases where $\,_3F_2$ degenerates into a $\,_2F_1$, which allows us to apply Gauss's well-known $\,_2F_1$ formula. They are $a=1$ and $a+b=\frac12$, where we always assume $a,b$ satisfy $\Re(a,b)>0$ without specific notifications. To go further, we note that $I(a,b)$ at special points cater to classical hypergeometric identities like Dixon's $\,_3F_2$ and Watson's $\,_3F_2$. And by repeated applications
of the hypergeometric transformations displayed here, we compute the closed-forms for $a=b,a+2b=\frac12,\frac32,2a+b=\frac32,\frac52.$ Also we have an obvious induction $I(a,b+1)=I(a,b)-I(a+1,b)$, thence to the general cases where $a+2b,2a+b\in\mathbb{Z}+\frac12,a-b\in\mathbb{Z}$.
Notably these evaluations don't exhaust all the closed-froms. It's also possible to prove that$$\small
\begin{aligned}
&{\left(\frac2\pi\right)^2\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}
\frac{(1-2k^2)K(k)}{\sqrt{k}(1-k^2)^{3/4}}\text{d}k
=2^{2s}\pi^{-s}\Gamma(s)[L_8(s)L_{-8}(s-2)+L_{-8}(s)L_{8}(s-2)]},\\
&{\left(\frac2\pi\right)^2\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}
\frac{\sqrt{k}K(k)}{(1-k^2)^{1/4}}\text{d}k
=2^{2s-1}\pi^{-s}\Gamma(s)[L_8(s)L_{-8}(s-2)-L_{-8}(s)L_{8}(s-2)]}.
\end{aligned}$$
This gives $I(\frac34,\frac34),I(\frac54,\frac14),I(\frac14,\frac54).$ The three cases are also do-able by discovering the relation
$$
I\left ( s,\frac32-s \right )
=\frac{\sin\left ( \pi s \right ) }{\sqrt{\pi} }
\Gamma\left ( s \right ) \Gamma\left ( \frac{3}{2}-s \right )
\int_{0}^{1} x^{s-\frac32}(1-x)^{-s}\arcsin\left ( \sqrt{x} \right )
\mathrm{d}x.
$$
And however, two special cases $I(\frac78,\frac58),I(\frac58,\frac78)$ are excluded here. They have evaluations at here, also by standard hypergeometric transformations. At the same time, we go on another direction regarding these integrals as critical $L$-values of modular forms and empolying the $q$-series expansions to arrive at some double sums, which evaluates to
be some gamma factors. For example, setting $q=\exp(-\pi K^\prime(k)/K(k))$ we have
$$
f(q)=\sum_{m,n\in\mathbb{Z}}
(-1)^m\left [ 3\left ( m+\frac16 \right )^2-n^2 \right ]
q^{3\left ( m+\frac16 \right )^2+n^2 }=\frac{2^{2/3}k^{1/6}(1-k^2)^{1/12}(1-2k^2)}{
3\pi^3}K(k)^3.$$
And using the modular parametrization $x=K^\prime(k)/K(k)$,
$$\int_{0}^{\infty}xf(q)\text{d}x
=\frac{1}{\pi^2} \sum_{m,n\in\mathbb{Z}}
\frac{(-1)^m}{\left ( \sqrt{3}\left ( m+\frac16 \right )+ni \right )^2 }
\Leftrightarrow\int_{0}^{1} \frac{(2k^2-1)K(k)}{k^{5/6}(1-k^2)^{11/12}}\text{d}k
=\frac{3^{7/4}\left ( 1+\sqrt{3} \right )\Gamma\left ( \frac13 \right )^6 }{
16\pi^2\cdot2^{1/3} }.$$
This is already known in our hypergeometric cases. The cases $I(\frac18,1),I(\frac38,1)$ obtained from here are unique, though. Gathering all these we make the following list of known evaluations therefore:
Cases where $a=1$ and $a+b=\frac12$.
$\displaystyle I(1,b)=\frac{\pi}{2} \frac{\Gamma\left ( b \right )^2 }{
\Gamma\left ( b+\frac12 \right )^2 }$, $\displaystyle I\left ( a,\frac{1}{2}-a \right )
=\frac{\sin\left ( \pi a \right ) }{2\pi}
\Gamma\left ( a \right )^2\Gamma\left ( \frac12-a \right )^2$.
By classic hypergeometric identities.
$$ I(s,s)=\frac{\Gamma\left ( \frac14 \right )^2 }{2^{2s+1}}
\frac{\Gamma\left ( s \right )^2 }{\Gamma\left (s+\frac14 \right )^2}, \qquad I\left ( s,\frac32-2s \right )
=\frac{\sin(\pi s)\Gamma\left ( \frac14 \right )^2}{2^{2s+2}\sin\left ( \pi
\left ( s+\frac14 \right ) \right )^2 }
\frac{\Gamma\left ( s \right )^2 }{\Gamma\left (s+\frac14 \right )^2}.$$
Cases where $a-b\in\mathbb{Z}$(by induction $I(a,b+1)=I(a,b)-I(a+1,b)$).
$$\begin{aligned}
&I(s+1,s)=
\frac{\Gamma\left ( \frac14 \right )^2 }{2^{2s+2}}
\frac{\Gamma\left ( s \right )^2 }{\Gamma\left (s+\frac14 \right )^2}
+\frac{\Gamma\left ( \frac34 \right )^2 }{2^{2s+2}}
\frac{\Gamma\left ( s \right )^2 }{\Gamma\left (s+\frac34 \right )^2},\\
&I(s,s+1)=
\frac{\Gamma\left ( \frac14 \right )^2 }{2^{2s+2}}
\frac{\Gamma\left ( s \right )^2 }{\Gamma\left (s+\frac14 \right )^2}
-\frac{\Gamma\left ( \frac34 \right )^2 }{2^{2s+2}}
\frac{\Gamma\left ( s \right )^2 }{\Gamma\left (s+\frac34 \right )^2}.
\end{aligned}
$$
Cases where $2a+b,a+2b\in\mathbb{Z}+\frac12$(by induction $I(a,b+1)=I(a,b)-I(a+1,b)$).
$$\begin{aligned}
&I\left ( s,\frac12-2s \right )
=\frac{\sin(\pi s)\Gamma\left ( \frac14 \right )^2}{2^{2s+3}\sin\left ( \pi
\left ( s+\frac14 \right ) \right )^2 }
\frac{\Gamma\left ( s \right )^2 }{\Gamma\left (s+\frac14 \right )^2}
+\frac{\sin(\pi s)\Gamma\left ( \frac34 \right )^2}{2^{2s+3}\sin\left ( \pi
\left ( s+\frac34 \right ) \right )^2 }
\frac{\Gamma\left ( s \right )^2 }{\Gamma\left (s+\frac34 \right )^2},\\
&I\left ( s+1,\frac12-2s \right )
=-\frac{\sin(\pi s)\Gamma\left ( \frac14 \right )^2}{2^{2s+3}\sin\left ( \pi
\left ( s+\frac14 \right ) \right )^2 }
\frac{\Gamma\left ( s \right )^2 }{\Gamma\left (s+\frac14 \right )^2}
+\frac{\sin(\pi s)\Gamma\left ( \frac34 \right )^2}{2^{2s+3}\sin\left ( \pi
\left ( s+\frac34 \right ) \right )^2 }
\frac{\Gamma\left ( s \right )^2 }{\Gamma\left (s+\frac34 \right )^2},\\
&I\left ( \frac12-2s,s+1 \right )
=-\frac{\Gamma\left ( \frac14 \right )^2}{2^{2s+5/2}\sin\left ( \pi
\left ( s+\frac14 \right ) \right ) }
\frac{\Gamma\left ( s \right )^2 }{\Gamma\left (s+\frac14 \right )^2}
+\frac{\Gamma\left ( \frac34 \right )^2}{2^{2s+5/2}\sin\left ( \pi
\left ( s+\frac34 \right ) \right ) }
\frac{\Gamma\left ( s \right )^2 }{\Gamma\left (s+\frac34 \right )^2},\\
&I\left ( \frac32-2s,s \right )
=\frac{\Gamma\left ( \frac14 \right )^2}{2^{2s+3/2}\sin\left ( \pi
\left ( \frac34 -s\right ) \right ) }
\frac{\Gamma\left ( s \right )^2 }{\Gamma\left (s-\frac34 \right )^2}.
\end{aligned}$$
Special cases regarding modular forms.
$$
\begin{aligned}\small
&I\left ( \frac54,\frac14 \right )= \frac{\pi^2}{2\sqrt{2} }+\frac{\Gamma\left ( \frac14 \right )^4 }{4\pi\sqrt{2} },
\qquad I\left ( \frac14,\frac54 \right )= -\frac{\pi^2}{2\sqrt{2} }+\frac{\Gamma\left ( \frac14 \right )^4 }{4\pi\sqrt{2} },\\
&I\left (\frac18,1 \right )
=\frac{\left ( 3+\sqrt{2} \right )
\Gamma\left ( \frac18 \right )^2\Gamma\left ( \frac38 \right )^2 }{
24\pi\sqrt{2} },\qquad I\left ( \frac38,1 \right )= \frac{\left ( 3-\sqrt{2} \right )
\Gamma\left ( \frac18 \right )^2\Gamma\left ( \frac38 \right )^2 }{
24\pi\sqrt{2} },\\
&4I\left ( \frac16,\frac7{24} \right ) +I\left ( \frac76,\frac7{24} \right )
=\frac{\sqrt{\left ( \sqrt{2}-1 \right )^3
\left ( \sqrt{3} +\sqrt{2} \right )^3}\cdot3^{1/4}
\left ( 1+\left ( 2-\sqrt{3} \right )
\left ( \sqrt{3} -\sqrt{2} \right ) \right )^2 }{2^{7/3}\pi}
\Gamma\left ( \frac{1}{24} \right )
\Gamma\left ( \frac{5}{24} \right )
\Gamma\left ( \frac{7}{24} \right )
\Gamma\left ( \frac{11}{24} \right ).
\end{aligned}
$$
Cases $a+b=\frac32.$
$$
\begin{aligned}
&I\left ( \frac12,1 \right )=4G,\qquad I\left ( \frac34,\frac34 \right ) = \frac{\pi^2}{2\sqrt{2} } ,\\
&I\left ( \frac78,\frac58 \right )=\frac{\pi^2}{6}
\sqrt{5+\frac{1}{\sqrt{2} } } ,\qquad I\left ( \frac58,\frac78 \right )=\frac{\pi^2}{6}
\sqrt{5-\frac{1}{\sqrt{2} } }.
\end{aligned}
$$
Some particular examples.
Note that
$$(n+1)^2\int_{0}^{1}k^{n+1}K(k)\text{d}k
-n^2\int_{0}^{1}k^{n-1}K(k) \text{d}k=1,$$
$$I(s,1)+I\left ( \frac12-s ,1\right )
=\frac{\pi}{2} \tan(\pi s)
\frac{\Gamma\left ( s \right )^2 }{
\Gamma\left ( s+\frac12 \right )^2}.$$ Substituting $n=-\frac12,s=\frac34$ gives two equations over $I(\frac34,1),\operatorname{reg}I(-\frac14,0)$, and we have $I\left ( \frac34,1 \right ) =
4-\frac{2\,\Gamma\left ( \frac34 \right )^4}{\pi}.$ Interestingly, differentiating with respect to $s$ where $s=\frac14$ gives a series of closed-forms of the hypergeometric type $L$-values $\sum_{n=0}^{\infty} \frac{\left ( \frac12 \right )_n^2 }{(1)_n^2}
\frac{1}{\left ( 4n+1 \right )^{2k+1} },k\in\mathbb{N}$. For instance,
$$
\sum_{n=0}^{\infty} \frac{\left ( \frac12 \right )_n^2 }{(1)_n^2}
\frac{1}{\left ( 4n+1 \right )^{5} }
=\frac{\Gamma\left ( \frac14 \right )^4 }{32\pi^2}
\left ( G^2+\beta(4) \right ) .
$$
Connections between $b=1$ and $a+b=\frac32$.
$$
\begin{aligned}
I(s,1) & = \frac{\sin(\pi s)}{\pi} \frac{\Gamma\left ( s \right )^2 }{
\Gamma\left ( s+\frac12 \right )^2 }
I\left(1-s,s+\frac12\right) ,\\
&=\frac{8\sin(\pi s)\Gamma(s)}{\sqrt{\pi}\,\Gamma\left ( s+\frac12 \right ) }
\int_{0}^{1} \left ( \frac{1-x^2}{2x} \right )^{2s}
\frac{\arctan(x)}{1-x^2}\mathrm{d}x.
\end{aligned}
$$
Two transformations.
$$
I(a,b)
=\cos\left ( \pi a \right ) I\left ( a,\frac32-a-b \right )
+\sin\left ( \pi b \right ) I\left ( b,\frac32-a-b \right )
+\cos\left ( \pi b \right ) I\left ( \frac32-a-b ,b\right ),
$$
$$
\sin\left ( \pi b \right ) I\left ( \frac32-a-b ,b\right )
=\sin\left ( \pi a \right ) I\left ( a,\frac32-a-b \right )
+\cos\left ( \pi b \right ) I\left ( b,\frac32-a-b \right ).
$$