Let
\begin{gather*}
A(t)=1+\sqrt{t}\cdot\ln(t\vee 1), \quad t\ge 0, \tag{1}\\
M(t)=\int_0^t\frac{\mathrm{d}B(s)}{A(s)}, \quad t\ge 0. \tag{2}
\end{gather*}
Then $A$ is positive, continuous and increasing on $\mathbb{R}_+$, $M$
is a continuous martingale on $\mathbb{R}_+$ with
\begin{align*}
\langle M \rangle_t &=\int_0^t\frac{\mathrm{d}s}{(1+\sqrt{s}\cdot\ln(s\vee 1))^2}\\
&\le \int_0^e\frac{\mathrm{d}s}{(1+\sqrt{s}\cdot\ln(s\vee 1))^2} + \int_e^t\frac{\mathrm{d}s}{s(\ln(s))^2} \\
&\le e + 1.\\
\lim_{t\to\infty} \langle M \rangle_t &< +\infty.
\end{align*}
Hence
\begin{equation*}
M(+\infty)=\lim_{t\to\infty}M(t) \quad\text{ exists and $M(+\infty)$ is finite a.s.} \tag{3}
\end{equation*}
Furthermore,
\begin{equation*}
\lim_{t\to\infty}\frac{M(t)}{A(t)}=0. \qquad \text{a.s.}
\end{equation*}
Now, from (2) and integration by parts,
\begin{align*}
B(t)&=\int_{0}^{t}A(s)\,\mathrm{d}M(s)
=A(t)M(t)-\int_{0}^{t}M(s)\,\mathrm{d}A(s),\\
\frac{B(t)}{A(t)}&=M(t)-\frac{1}{A(t)}\int_{0}^{t}M(s)\,\mathrm{d}A(s).
\end{align*}
Hence, using (3) get
\begin{equation*}
\lim_{t\to\infty}\Big[\frac{1}{A(t)}\int_{0}^{t}M(s)\,\mathrm{d}A(s)\Big]
=\lim_{t\to\infty}M(t) \tag{4}
\end{equation*}
and
\begin{equation*}
\lim_{t\to\infty}\frac{B(t)}{A(t)}=0. \quad \text{a.s.}
\end{equation*}
Meanwhile,
\begin{align*}
\lim_{t\to\infty}\frac{\sqrt{t}\ln(t)}{A(t)}=1,
\end{align*}
Hence,
\begin{equation*}
\lim_{t\to\infty}\frac{B(t)}{\sqrt{t}\ln(t)}=0.\quad \text{a.s.}
\end{equation*}
Add in proof( of (4)): Fixing
\begin{align*}
\omega_0 & \in \Omega_0 \\
&\stackrel{\triangle}{=}\{\omega: M(+\infty,\omega)=\lim_{t\to\infty}M(t,\omega) \text{ exists and $M(+\infty,\omega)$ is finite }\},
\end{align*}
then for each $\varepsilon>0$, there exists $T$ such that
\begin{equation*}
|M(t,\omega_0)-M(+\infty,\omega_0)|<\varepsilon,\quad \text{as $t>T$}.
\end{equation*}
Hence
\begin{align*}
&\Big|\frac{1}{A(t)-A(0) } \int_{0}^{t}M(s,\omega_0)\,\mathrm{d}A(s)-M(+\infty,\omega_0) \Big|\\
&\quad \le \frac{1}{A(t)-A(0)}\int_{0}^{t}|M(s,\omega_0)-M(+\infty,\omega_0)|\,\mathrm{d}A(s)\\
&\quad \le \frac{1}{A(t)-A(0)}\int_{0}^{T}|M(s,\omega_0)-M(+\infty,\omega_0)|\,\mathrm{d}A(s)\\
&\qquad\quad +\frac{1}{A(t)-A(0)} \int_{T}^{t}|M(s,\omega_0)-M(+\infty,\omega_0)|\,\mathrm{d}A(s)\\
&\quad \le \frac{1}{A(t)-A(0)} \int_{0}^{T}|M(s,\omega_0)-M(+\infty,\omega_0)|\,\mathrm{d}A(s) + \varepsilon,
\end{align*}
and
\begin{equation*}
\varlimsup_{t\to\infty} \Big|\frac{1}{A(t)-A(0)} \int_{0}^{t}M(s,\omega_0)\, \mathrm{d}A(s)-M(+\infty,\omega_0) \Big|\le \varepsilon.
\end{equation*}
Now letting $\varepsilon\downarrow 0$ get
\begin{gather*}
\varlimsup_{t\to\infty} \Big|\frac{1}{A(t)-A(0)}\int_{0}^{t}M(s,\omega_0)\, \mathrm{d}A(s)-M(+\infty,\omega_0) \Big|=0.
\end{gather*}
This also means
\begin{equation*}
\lim_{t\to\infty} \frac{1}{A(t)}\int_{0}^{t}M(s,\omega_0)\,\mathrm{d}A(s) = M(+\infty,\omega_0),
\end{equation*}
and
\begin{equation*}
\Omega_0\subset \Big\{\omega:\lim_{t\to\infty} \frac{1}{A(t)}\int_{0}^{t}M(s,\omega)\,\mathrm{d}A(s) = M(+\infty,\omega) \Big\}.
\end{equation*}