I am proving the second order derivative in the Matrix Cookbook. This is my current work:
\begin{align} \frac{\partial}{\partial x_{pq}} tr(X^TBX)&=\frac{\partial}{\partial x_{pq}} \sum_{i=1}^n (X^TBX)_{ii}\\ &=\frac{\partial}{\partial x_{pq}} \sum_{i=1}^n \sum_{j=1}^m (X^TB)_{ij}X_{ji}\\ &=\frac{\partial}{\partial x_{pq}} \sum_{i=1}^n \sum_{j=1}^m \sum_{k=1}^m X^T_{ik} B_{kj} X_{ji}\\ &=\frac{\partial}{\partial x_{pq}} \sum_{i=1}^n \sum_{j=1}^m \sum_{k=1}^m B_{kj}(x_{ki} x_{ji})\\ % &=\frac{\partial}{\partial x_{pq}} B_{pp} x_{pq}^2+\frac{\partial}{\partial x_{pq}} \sum_{j=1}^m B_{pj} x_{jq}+\frac{\partial}{\partial x_{pq}} \sum_{k=1}^m B_{kp} x_{kq}\\ &=\underbrace{\frac{\partial}{\partial x_{pq}} B_{pp} x_{pq}^2}_\text{$k=j=p,i=q$} +\ \underbrace{\frac{\partial}{\partial x_{pq}} \sum_{j=1}^m B_{pj} x_{pq} x_{jq}}_\text{$p=k\neq j,i=q$}+\ \underbrace{\frac{\partial}{\partial x_{pq}} \sum_{k=1}^m B_{kp} x_{kq} x_{pq}}_\text{$p=j\neq k,i=q$}\\ &=2B_{pp} x_{pq}+ \sum_{j=1}^m B_{pj} x_{jq} +\sum_{k=1}^m B_{kp} x_{kq} \end{align}
I saw another post that solved it, but why did the poster just ignore the $\frac{\partial}{\partial x_{pq}} B_{pp} x_{pq}^2$ term?