Is there an easy way to show or disprove the matrix
$\begin{bmatrix} 1&1& 0& 0&1 &0 &0 \\0&0&1&1&0&1&0 \\0&0&0&0&1&1&1 \\1& 0& 0&0&1& 0&0 \\0&1&0&0&1& 0&0 \\0&0&1&0&0&1&0 \\0&0&0&1&0&1&0 \\0&0&0&0&1&0&1 \\0&0&0&0&0&1&1 \end{bmatrix}$
is totally unimodular?
If you look at the matrix, almost all the rows have two non-zero entries and only $1/3$rd of the rows have three non-zero entries. So $2/3$rd of the matrix is directly totally unimodular. It is the rows with three non-zero entries which seem a little tricky.