0

Is there an easy way to show or disprove the matrix

$\begin{bmatrix} 1&1& 0& 0&1 &0 &0 \\0&0&1&1&0&1&0 \\0&0&0&0&1&1&1 \\1& 0& 0&0&1& 0&0 \\0&1&0&0&1& 0&0 \\0&0&1&0&0&1&0 \\0&0&0&1&0&1&0 \\0&0&0&0&1&0&1 \\0&0&0&0&0&1&1 \end{bmatrix}$

is totally unimodular?

If you look at the matrix, almost all the rows have two non-zero entries and only $1/3$rd of the rows have three non-zero entries. So $2/3$rd of the matrix is directly totally unimodular. It is the rows with three non-zero entries which seem a little tricky.

Turbo
  • 6,319

1 Answers1

1

Reorder the rows so that the columns satisfy the consecutive ones property:

0   1   0   0   1   0   0
1   1   0   0   1   0   0
1   0   0   0   1   0   0
0   0   0   0   1   0   1
0   0   0   0   1   1   1
0   0   0   0   0   1   1
0   0   1   0   0   1   0
0   0   1   1   0   1   0
0   0   0   1   0   1   0
RobPratt
  • 50,938