A sequence of mollifiers $(\rho_n)_{n \geq 1}$ is any sequence of functions on $\mathbb{R}^d$ such that $$ \rho_n \in C_c^{\infty} (\mathbb{R}^d), \quad \operatorname{supp} \rho_n \subset \overline{B(0, r_n)}, \quad \sup_n \|\rho_n\|_1 < \infty, \quad \int \rho_n \xrightarrow{n \to \infty} 1, $$ where $r_n \to 0^+$ and $B(x, r)$ denotes an open ball centered at $x$ with radius $r$.
I would like to prove a statement mentioned in this comment, i.e.,
Theorem Let $f \in \mathcal C (\mathbb R^d)$. Then $\rho_n * f \xrightarrow{n \to \infty} f$ uniformly on compact sets.
Could you have a check on my below attempt?
Proof WLOG, we assume $\sup_n r_n \le 1$. Fix a compact subset $K$ of $\mathbb{R}^d$. Fix $\varepsilon>0$. Then $f$ is uniformly continuous on $K' :=K - \overline{B(0, 1)}$. There is $\delta>0$ such that if $x,y \in K'$ with $|x-y| < \delta$ then $|f(x)-f(y) |< \varepsilon$. Let $a_n := \int \rho_n$. Then $a_n \to 1$. There is $N \in \mathbb N$ such that $|a_n-1| < \varepsilon$ for all $n \ge N$. Let $\alpha :=\sup_{x\in K} |f(x)| < \infty$. If $x \in K$ and $r_n < \delta$ and $n > N$ then $$ \begin{align} &|\rho_n * f (x)-f(x)| \\ = & \bigg | \int_{\overline{B(0, r_n)}} (f(x-y)-f(x)) \rho_n(y) \, \mathrm d y + (a_n-1) f(x) \bigg |\\ \le & \int_{\overline{B(0, r_n)}} |f(x-y)-f(x)| | \rho_n(y)| \, \mathrm d y + \alpha |a_n-1| \\ \le & \varepsilon \|\rho_n\|_1 + \varepsilon\alpha. \end{align} $$
The claim then follows by taking the limit $\varepsilon \downarrow 0$.