In Vershynin's Introduction to the Non-asymptotic Analysis of Random Matrices, the sub-gaussian norm $\|X\|_{\psi_2}$ of a sub-gaussian random variable $X$ is defined by $$ \|X\|_{\psi_2}=\sup_{p\ge1}p^{-1/2}\left(\mathbb{E}|X|^p\right)^{1/p}. $$
According to this post, it is possible that $\|X\|_{\psi_2}^2\neq\text{Var}(X)$. My question is: Do there exist constants $C_2\ge C_1>0$ such that for all sub-gaussian variables $X$, it holds that $$ C_1\text{Var}(X)\le\|X\|_{\psi_2}^2\le C_2\text{Var}(X)? $$