10

Let $K(x)$ be the complete elliptic integral of the first kind with the following convention $$K(x):=\int_{0}^{\pi/2}\frac{\mathrm{d}\theta}{\sqrt{1-x\sin^{2}(\theta)}}.$$ For a research work, I would like to compute the Fourier-Legendre coefficients of $K(x)^{2}$, that is, integrals of the type $$\int_{0}^{1}K(x)^{2}P_{n}\left(2x-1\right)\mathrm{d}x$$ where $P_{n}(x)$ are the Legendre polynomials. For now, I'm only able to prove the following representation for odd $n$ $$\int_{0}^{1}K(x)^{2}P_{2k+1}(2x-1)\mathrm{d}x=\frac{1}{(2k+1)(k+1)}\,_{4}F_{3}\left(\left.{1,-k,k+\frac{3}{2},\frac{1}{2}\atop\frac{1}{2}-k,k+2,\frac{3}{2}}\right|1\right).$$ I tried to search some identities and to apply some classical results to this $_{4}F_{3}$ but I'm not able to find a closed form of such function (for closed form I intend some representation in terms of ratio of Gamma functions or in terms to functions strictly related to Gamma function).

So my question is:

does anyone know if this hypergeometric function admits a closed form?

Bonus question: for even $n$, for now, I have no idea to attack this problem, so any suggestions are welcome.

Math Attack
  • 5,343
  • Could you write the syntax for WA or Mathematica ? Thanks :-) – Claude Leibovici Apr 06 '23 at 07:11
  • 1
    @ClaudeLeibovici Hello Claude! Do you mean this? Integrate[EllipticK[x]^2LegendreP[n, 2x - 1], {x, 0, 1}, Assumptions -> n [Element] PositiveIntegers] and HypergeometricPFQ[{1/2, 1, -n, 3/2 + n}, {3/2, 1/2 - n, 2 + n}, 1] – Marco Cantarini Apr 06 '23 at 08:08
  • If you don't mind, I would prefer the syntax for the hypergeometri function (I am unable to get it). Thanks – Claude Leibovici Apr 06 '23 at 08:17
  • @ClaudeLeibovici The syntax for the hypergeometric funcion is HypergeometricPFQ[{1/2, 1, -n, 3/2 + n}, {3/2, 1/2 - n, 2 + n}, 1] , if you want to add the condition that $n$ is a natural number you may use Element[n, Integers] && n >= 0 (maybe there are other ways to do this, I'm not a big expert of Mathematica). – Marco Cantarini Apr 06 '23 at 08:39
  • It seems to be quite close to $2,n^{1/8}$. It is a very nice function – Claude Leibovici Apr 06 '23 at 09:16
  • Maple hypergeom([1,-k,k+3/2,1/2],[1/2-k,k+2,3/2],1) with values $$1,{\frac{14}{9}},{\frac{407}{225}},{\frac{12092}{6125}},{\frac{ 1456787}{694575}},{\frac{22144354}{10085229}}$$ – GEdgar Apr 06 '23 at 11:08
  • I think this comes out to be the following, although this might be harder to solve.

    $$-\int_{-\infty}^{0}K(x)^{2}, \frac{{2}F{1}\left(-n,-n,1,x\right)}{(x-1)^{1+n}} \mathrm dx$$

    – Miracle Invoker Apr 06 '23 at 18:38
  • Wolfram Alpha Syntax: Integrate[(-(EllipticK[t])^2(2F1(-n, -n, 1, t))/(t-1)^(1+n)),{t,-inf,0}] NOTE: WA outputs less decimals compared to the original function. – Miracle Invoker Apr 06 '23 at 18:52
  • Evaluation at $n=-1$ is interesting: $, _4F_3\left(\frac{1}{2},1,1,\frac{3}{2}-1;\frac{3}{2},\frac{1}{2}+1,2-1;1\right)=\frac{\pi^2}{8}$. – Steven Clark Apr 06 '23 at 23:10

5 Answers5

6

Let $f(n) = \int_0^1 K(x)^2 P_n(2x-1) dx$. It's well-known that $\int_0^1 x^n K(x)^2 dx \in \mathbb{Q} + \mathbb{Q}\zeta(3)$, so $f(n) \in \mathbb{Q} + \mathbb{Q}\zeta(3)$ as well, in particular $f(0) = \frac{7}{2}\zeta(3), f(1)=1$.

We prove below that $$\tag{$*$}-(n+1)^4 f(n)+(n+2)^4 f(n+2)-2 n-3=0$$ So this implies $f(2n+1)\in \mathbb{Q}$, already observed by OP.

Let $g(n)=f(2n+1), h(n) = f(2n)$, then \begin{aligned}-5-4n-16(1+n)^4 g(n) + (3+2n)^4 g(n+1) &= 0 \\ -3-4n-(2n+1)^4h(n)+(2+2n)^4h(n+1)&=0 \end{aligned}

For both difference equations, it can be proved they don't have hypergeometric solution, so in this sense, $f(n)$ and OP's $_4F_3$ $\color{red}{\text{have no closed-form}}$.

Since they're only of 1st order, we can still down $g(n), h(n)$ explicitly using a single summation:

$$f(2n) = \frac{\Gamma \left(n+\frac{1}{2}\right)^4}{16 \Gamma (n+1)^4}\sum _{m=0}^{n-1} \frac{(3+4 m) \Gamma (m+1)^4}{\Gamma \left(\frac{3}{2}+m\right)^4}+\frac{7 \zeta (3) \Gamma \left(n+\frac{1}{2}\right)^4}{2 \pi ^2 \Gamma (n+1)^4}$$

for $f(2n+1)$, it's essentially the terminating $_4F_3$ given by OP, so omitted here.


Proof of $(*)$: this is entirely algorithmic. Let $S_n$ be shift in $n$, i.e. $S_n f(n) = f(n+1)$ and $D_x$ be derivative.

Let $F(n,x) = K(x)^2 P_n(2x-1)$ and creative telescoping algorithm says for $G(n,x)$ equals $$G(n,x) = \left[-(2 (2 n+3) (x-1)^2 x^2) D_x^2 S_n + (2 n+3) (3 n+1) (x-1) x (2 x-1) D_x S_n - 3 (n+1) (2 n+3) (x-1) x D_x - 2 (2 n+3) \left(3 n^2+6 n+4\right) (x-1) x S_n \right] F(n,x)$$

we have $[(n+2)^4 S_n^2-(n+1)^4]F + D_x G = 0$ (which can be checked), so $$\begin{aligned} \left[(n+2)^4 S_n^2-(n+1)^4 \right] f(n) &= \int_0^1 [(n+2)^4 S_n^2-(n+1)^4] F(n,x) dx \\ &= -\int_0^1 D_x G(n,x) dx = -G(n,1)+G(n,0)\end{aligned}$$ which then easily computes to be $3+2n$, this proves $(*)$.

pisco
  • 19,748
  • (+1) Nice, thanks. Just a (maybe silly) question: It is not clear to me how you derive the $f(2n)$ expression from the recurrence relation – Marco Cantarini Apr 07 '23 at 14:38
  • 2
    For general first order recurrence in $r(n)$, with $a,b,c$ rational function, $a(n) r(n+1) + b(n) r(n) = c(n)$, let $r(n) = H(n) s(n)$ for some to-be-determined $H$, then $$a(n)H(n+1) s(n+1) + b(n) H(n) s(n) = c(n)$$ if we choose $H$ to be a hypergeometric term such that $a(n) H(n+1) = -b(n) H(n)$, then $$s(n+1) - s(n) = \frac{c(n)}{a(n)H(n+1)}$$ LHS telescopes, so $s(n)$ is sum of RHS, multiply by $H(n)$ to get $r(n)$. – pisco Apr 07 '23 at 15:44
  • I have another question: how did you manage to find the expression for $G(n,x)$? I tried to study the creative telescoping algorithm a bit but I couldn't understand how you managed to arrive at this expression. Thank you. – Marco Cantarini May 04 '23 at 07:24
  • @MarcoCantarini If you're looking at the classical creative telescoping (i.e. both variables are discrete), then it's not immediately related to the problem, but the core idea is extremely similar. There is an analogue when one variable is continuous, which is our case. I think the book "A=B" by Zeilberger mentions this. – pisco May 10 '23 at 07:07
  • Could you help me with the computation of $f(n)=\int_{0}^{1}\sqrt{x} \left ( 3K\left ( \sqrt{x} \right ) K\left ( \sqrt{1-x} \right )^2-K\left ( \sqrt{1-x} \right )^3 \right )P_{n}(2x-1)\text{d}x$? This has $Q\cdot\pi^4$ – Setness Ramesory Jul 16 '23 at 06:11
  • @SetnessRamesory I think you already know these are $\mathbb{Q}\pi^4$ from contour integration. You want an recurrence in $n$? – pisco Jul 16 '23 at 19:06
  • @pisco Basically. The $f(2n)$ can be used to compute the Legendre-fourier expansion of $K(\sqrt{x})^2+K(\sqrt{1-x})^2$, which gives some interesting series. – Setness Ramesory Jul 20 '23 at 15:08
  • @SetnessRamesory I think you mean $f(n) = \int_{0}^{1}\sqrt{x} \left ( 3K\left ( \sqrt{x} \right )^2 K\left ( \sqrt{1-x} \right )-K\left ( \sqrt{1-x} \right )^3 \right )P_{n}(2x-1)\text{d}x$ if you want a result in $\mathbb{Q}\pi^4$, $f(n)$ satisfies a complicated recurrence of order $6$. – pisco Jul 20 '23 at 16:22
  • @pisco Since I am not familiar with your universal approach, could you give out more details? I desire to compute the Legendre-fourier expansions in relation to several functions of $K,E$. – Setness Ramesory Jul 22 '23 at 05:57
  • @SetnessRamesory I can give you give order $6$ recursion explicit, but it is very complicated. You only need to know $f(n)$ has no "simple formula". – pisco Jul 26 '23 at 08:22
  • @pisco if $\frac{K\left ( \sqrt{x} \right ) }{\sqrt{x(1-x)} }$ has FL-expansions? – Setness Ramesory Aug 29 '23 at 10:35
  • for $\int_{0}^{1} \frac{K\left ( \sqrt{x} \right ) P_n(2x-1)}{\sqrt{x(1-x)} } \text{d}x=R_1\cdot\frac{\Gamma\left ( \frac14 \right )^4 }{\pi} +R_2\cdot\frac{\Gamma\left ( \frac34 \right )^4 }{\pi},R_1,R_2\in\mathbb{Q}$ is true for any $n$ – Setness Ramesory Aug 30 '23 at 03:40
  • @SetnessRamesory Let $f(n) = \int_{0}^{1} \frac{K\left ( \sqrt{x} \right ) P_n(2x-1)}{\sqrt{x(1-x)} } dx$, then creative telescoping says $$\left(2 n^3+9 n^2+13 n+6\right) f(n)+\left(-4 n^3-30 n^2-78 n-70\right) f(n+2)+\left(2 n^3+21 n^2+73 n+84\right) f(n+4) = 0$$ the recurrence has unfortunately no simple solution. But it says $$f(2n) \in \mathbb{Q} \frac{\Gamma(1/4)^4}{\pi} \qquad f(2n+1) \in \mathbb{Q}\frac{\Gamma(3/4)^4}{\pi} $$ – pisco Aug 30 '23 at 16:47
  • Would you mind computing more such $f(n)$ involving $K$ for which I am planning to write a small essay on it? Besides, the statement shown above is so elegant that some theoretic reasons are possible. – Setness Ramesory Sep 23 '23 at 17:26
  • @SetnessRamesory I strongly encourage you to publish your previous results on integrals involving $K, E$, because most of them are new. I also give you the Mathematica code, which I used to derive above recurrence, so that you can explore yourself. – pisco Sep 23 '23 at 17:42
5

$K(x)$ = Complete Elliptic Integral of the First Kind. $$K(x)=\int_{0}^{\pi/2}\frac{1}{\sqrt{1-x\sin^2\theta}}d\theta$$

$f(n)$ = Fourier-Legendre Coefficients of $K(x)^2$ $$f(n)=\int_{0}^{1}K(x)^2P_n(2x-1)dx$$

Series Representation of $P_n(x)$ : $$P_n(x)=\frac{1}{2^n}\sum_{k=0}^{n}\binom{n}{k}^2(x-1)^{n-k}(x+1)^k$$

Replacing $x\to2x-1$: $$P_n(2x-1)=(x-1)^n\sum_{k=0}^{n}\binom{n}{k}^2(\frac{x}{x-1})^k$$ Now, $$f(n)=\int_{0}^{1}K(x)^2(x-1)^n\sum_{k=0}^{n}\binom{n}{k}^2(\frac{x}{x-1})^kdx$$ Replace $\frac{x}{x-1}\to u$, Limits change from $x:0 \to u:0$, $x:1 \to u:-\infty$ $$f(n)=\int_{-\infty}^{0}K(\frac{x}{x-1})^2\frac{1}{(x-1)^{n+2}}\sum_{k=0}^{n}\binom{n}{k}^2x^kdx$$ Also, $$K(\frac{x}{x-1})=\sqrt{1-x}K(x)$$ Therefore, $$f(n)=-\int_{-\infty}^{0}K(x)^2\frac{1}{(x-1)^{n+1}}\sum_{k=0}^{n}\binom{n}{k}^2x^kdx$$

$\frac{1}{(x-1)^{n+1}}\sum_{k=0}^{n}\binom{n}{k}^2x^k$ can be decomposed into partial fractions as follows: $$\frac{1}{(x-1)^{n+1}}\sum_{k=0}^{n}\binom{n}{k}^2x^k=\sum_{k=0}^{n}\frac{(n+k)!}{(k!)^2(n-k)!}\frac{1}{(x-1)^{k+1}}$$ I am not sure how to prove the above equation, as it is purely experimental work (I was able to find out the coefficients using Sequence A063007)

Now, $$f(n)=-\int_{-\infty}^{0}K(x)^2\sum_{k=0}^{n}\frac{(n+k)!}{(k!)^2(n-k)!}\frac{1}{(x-1)^{k+1}}dx$$ $$f(n)=-\sum_{k=0}^{n}\frac{(n+k)!}{(k!)^2(n-k)!}\int_{-\infty}^{0}\frac{K(x)^2}{(x-1)^{k+1}}dx$$

We define a new function as follows: $$Q(n)=\int_{-\infty}^{0}\frac{K(x)^2}{(x-1)^{n}}dx$$ Upon observation: $$Q(n)=(-1)^{n}(\alpha_n\zeta(3)-\beta_n)$$ The coefficients $\alpha_n$ & $\beta_n$ follow the following recurrence relation: (Found out using this post Conjectured closed form for $\int_0^1x^{2q-1}K(x)^2dx$ where $K(x)$ is the complete elliptical integral of the 1ˢᵗ kind) $$r_n=\frac{(2n-3)(2n^2-6n+5)}{2(n-1)^3}r_{n-1}-(\frac{n-2}{n-1})^3r_{n-2}$$ Where the initial conditions are as follows: $$\alpha_1=7/2, \alpha_2=7/4$$ $$\beta_1=0, \beta_2=1/2$$ $\alpha,\beta$ Graphed as $x, y$

Now, $$f(n)=-\sum_{k=0}^{n}\frac{(n+k)!}{(k!)^2(n-k)!}Q(k+1)$$ $$f(n)=\sum_{k=0}^{n}\frac{(n+k)!}{(k!)^2(n-k)!}[(-1)^{k}(\alpha_{k+1}\zeta(3)-\beta_{k+1})]$$ $$\color{red} {f(n)=\left(\sum_{k=0}^{n}\frac{(n+k)!}{(k!)^2(n-k)!}(-1)^k\alpha_{k+1}\right)\zeta(3)-\left(\sum_{k=0}^{n}\frac{(n+k)!}{(k!)^2(n-k)!}(-1)^k\beta_{k+1}\right)}$$ Let: $$\mathrm{A_n}=\left(\sum_{k=0}^{n}\frac{(n+k)!}{(k!)^2(n-k)!}(-1)^k\alpha_{k+1}\right)$$ $$\mathrm{B_n}=\left(\sum_{k=0}^{n}\frac{(n+k)!}{(k!)^2(n-k)!}(-1)^k\beta_{k+1}\right)$$

Conjecture through Experimental Observation: $$\mathrm{A_{2n-1}}=0$$ $$f(2n-1)=-\mathrm{B_{2n-1}}$$ Values of $f(2n-1)$: $$f(1)=1$$ $$f(3)=\frac{7}{27}$$ $$f(5)=\frac{407}{3375}$$ $$f(7)=\frac{81621}{1157625}$$ $$f(9)=\frac{39333249}{843908625}$$

By Observation: $$f(2n-1)=\frac{C}{(\prod_{r=1}^{n}(2r-1))^3}$$ $$f(2n-1)=(\frac{\sqrt{\pi}}{2^n\Gamma(n+\frac{1}{2})})^3C$$ Still searching about C.

4

Consider

$${}_4F_3\left(\begin{matrix}a_1,a_2,a_3,a_4 \\ b_1,b_2,b_3\end{matrix}~\bigg |~1\right)$$ When $\sum_i a_i-\sum_ib_i=-1$, Wolfram Research gives the formula

$${}_4F_3\left(\begin{matrix}a_1,a_2,a_3,a_4 \\ b_1,b_2,b_3\end{matrix}~\bigg |~1\right) \\ =\frac{\mathrm e^{-\mathrm i\pi(b_1+1)} \Gamma(b_2)\Gamma(b_3)\prod_{i=1}^4 \sqrt{\Gamma(1-a_i)~\Gamma(1-b_1+a_i)}}{\Gamma(1-b_1) \prod_{i,j~;~ j\neq 1}\sqrt{\Gamma(b_j-a_i)}}~\begin{Bmatrix}\frac{b_3-a_1-a_4-1}{2} & \frac{b_2-a_1-a_3-1}{2} & \frac{a_1+a_2-b_1-1}{2} \\ \frac{b_3-a_2-a_3-1}{2} & \frac{b_2-a_2-a_4-1}{2} & \frac{a_3+a_4-b_1-1}{2}\end{Bmatrix}$$

Where $$\begin{Bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot\end{Bmatrix}$$ Is a Wigner 6j.

In your case you want to calculate $${}_4F_3\left(\begin{matrix}1,-k,k+\frac{3}{2},\frac{1}{2} \\ \frac{1}{2}-k,k+2,\frac{3}{2}\end{matrix}~\bigg|~1\right)$$ You can check that $$1-k+k+3/2+1/2-(1/2-k)-(k+2)-3/2=-1$$ And so the linked formula is valid. Of course you will need to plug all the values into the formula and simplify.

K.defaoite
  • 13,890
2

Motivated by @Black Emperor's answer $$Q(5)=\frac{12509 }{16384}\zeta (3)-\frac{82085}{221184}$$ $$Q(6)=\frac{18509269}{55296000}-\frac{21329 }{32768}\zeta (3)$$ $$Q(7)=\frac{298417 }{524288}\zeta (3)-\frac{89992679}{294912000}$$ $$Q(8)=\frac{56796554519}{202309632000}-\frac{531559}{1048576} \zeta (3)$$ $$Q(9)=\frac{491564381 }{1073741824}\zeta (3)-\frac{53919965143021}{207165063168000}$$ $$Q(10)=\frac{8150801125136869}{33560740233216000}-\frac{897566789}{2147483648} \zeta(3)$$ $$Q(11)=\frac{13226643619}{34359738368} \zeta (3)-\frac{24471879971879527}{107394368746291200}$$ $$Q(12)=\frac{61408867748616923207}{285883809602627174400}-\frac{24539981809 }{68719476736}\zeta(3)$$

  • Thank You I was able to find the recurrence relation. I believe the answer should be complete now. Though can you tell me the name of the software, I am new to this stuff. – Miracle Invoker Apr 07 '23 at 10:57
  • @BlackEmperor. Mathematica for computing the integrals and WA for the identification. To give you the syntax, type express 12.3456789 through pi – Claude Leibovici Apr 07 '23 at 11:02
2

For more, define $$ K(k)=\int_{0}^{1} \frac{1}{\sqrt{1-t^2}\sqrt{1-\color{red}{k^2}t^2} } \text{d}t. $$ Then $$ \int_{0}^{1}K(k)^2\text{d}k =\frac{\pi^4}{32} {}_7F_6\left ( \frac12,\frac12,\frac12,\frac12,\frac12,\frac12,\frac54; \frac14 ,1,1,1,1,1;1\right ), $$ $$ \int_{0}^{1}k^2K(k)^2\text{d}k =1+\frac{3\pi^4}{512} {}_7F_6\left ( \frac12,\frac12,\frac12,\frac12,\frac32,\frac32,\frac74; \frac34 ,1,2,2,2,2;1\right ). $$ Consequently, all $\int_{0}^{1}k^{2n}K(k)^2\text{d}k$ have similar expressions due to the recurrence relation.