Consider the space $l_{2} = \{ (x_{n})_{n\in \mathbb{N}} \subset \mathbb{R} : \sum_{n=1}^{\infty} |x_{n}|^{2} < \infty \}$. Now, consider the bilinear form $A(\cdot,\cdot):l_{2}\times l_{2}\to \mathbb{R}$, which is given by \begin{equation} A(x,y) = \sum_{n=1}^{\infty} a_{n}x_{n}y_{n}\text{,} \end{equation} where $(a_{n})_{n\in\mathbb{N}}$ is a sequence of positive numbers defined by $a_{n} = 2^{-n}$. We know that $l_{2}$ is an inner product space with inner product $\langle \cdot, \cdot \rangle$ defined by \begin{equation} \langle x,y \rangle = \sum_{n=1}^{\infty} x_{n}y_{n}\text{.} \end{equation} Question: Is the bilinear form $A(x,y)$ coercive? In other words, does there exists $\alpha>0$ such that \begin{equation} \sum_{n=1}^{\infty} a_{n}x_{n}^2 = A(x,x) \geq \alpha \sum_{n=1}^{\infty} x_{n}^{2}? \end{equation}
Thanks in advance.