Although a bit more involved, here is a solution using linear recurrence relations.
Deriving Recurrences for $\pmb{a_n}$ and $\pmb{b_n}$
Define $a_n,b_n\in\mathbb{Z}$ as $a_n+b_n\sqrt8=\left(3+\sqrt8\right)^n$. Then
$$
\begin{align}
a_n+b_n\sqrt8
&=\left(a_{n-1}+b_{n-1}\sqrt8\right)\left(3+\sqrt8\right)\tag{1a}\\
&=(3a_{n-1}+8b_{n-1})+(a_{n-1}+3b_{n-1})\sqrt8\tag{1b}
\end{align}
$$
Equating the coefficients of $1$ and $\sqrt8$ in $(1)$, we get
$$
\begin{align}
a_n&=3a_{n-1}+8b_{n-1}\tag{2a}\\
b_n&=\phantom{3}a_{n-1}+3b_{n-1}\tag{2b}
\end{align}
$$
Then
$$
\begin{align}
a_n&=3a_{n-1}+8a_{n-2}+24b_{n-2}\tag{3a}\\
&=6a_{n-1}-a_{n-2}\tag{3b}
\end{align}
$$
Explanation:
$\text{(3a):}$ substitute $n\mapsto n-1$ in $\text{(2b)}$ to get $b_{n-1}=a_{n-2}+3b_{n-2}$
$\phantom{\text{(3a):}}$ then use for $b_{n-1}$ in $\text{(2a)}$
$\text{(3b):}$ substitute $n\mapsto n-1$ in $\text{(2a)}$ to get $8b_{n-2}=a_{n-1}-3a_{n-2}$
$\phantom{\text{(3b):}}$ then mulitiply by $3$ to get $24b_{n-2}=3a_{n-1}-9a_{n-2}$
$\phantom{\text{(3b):}}$ then use for $24b_{n-2}$ in $\text{(3a)}$
Since $\text{(2a)}$ says $b_n=\frac{a_{n+1}-3a_n}8$, we see that $b_n$ also satisfies the recurrence in $(3)$: $b_n=6b_{n-1}-b_{n-2}$.
An Observation
Since $a_0=1$ and $a_1=3$ and $a_n$ satisfies the recursion in $(3)$, we get the first several terms
$$
1,3,17,99,577,3363,\dots\tag4
$$
a bit of observation shows that this sequence is
$$
0^2+1,2^2-1,4^2+1,10^2-1,24^2+1,58^2-1,\dots\tag5
$$
The terms which are squared appear to follow the recursion $c_n=2c_{n-1}+c_{n-2}$.
Proving the Observation
Suppose that $c_n=2c_{n-1}+c_{n-2}$. Then
$$
\begin{align}
c_n^2
&=(2c_{n-1}+c_{n-2})^2\tag{6a}\\
&=4c_{n-1}^2+c_{n-2}^2+4c_{n-1}c_{n-2}\tag{6b}
\end{align}
$$
Furthermore,
$$
\begin{align}
c_nc_{n-1}
&=(2c_{n-1}+c_{n-2})c_{n-1}\tag{7a}\\
&=2c_{n-1}^2+c_{n-1}c_{n-2}\tag{7b}
\end{align}
$$
Therefore,
$$
\begin{align}
c_n^2-4c_{n-1}^2-c_{n-2}^2&=4c_{n-1}c_{n-2}\tag{8a}\\
c_{n-1}^2-4c_{n-2}^2-c_{n-3}^2&=4c_{n-2}c_{n-3}\tag{8b}\\
c_n^2-5c_{n-1}^2+3c_{n-2}^2+c_{n-3}^2&=8c_{n-2}^2\tag{8c}\\
c_n^2-5c_{n-1}^2-5c_{n-2}^2+c_{n-3}^2&=0\tag{8d}
\end{align}
$$
Explanation:
$\text{(8a):}$ apply $(6)$
$\text{(8b):}$ apply $(6)$
$\text{(8c):}$ subtract $\text{(8b)}$ from $\text{(8a)}$ and apply $(7)$
$\text{(8d):}$ cancel
Thus, $c_n^2$ satisfies the linear recurrence in $\text{(8d)}$. The characteristic polynomial of the linear recurrence in $\text{(8d)}$ can be factored as
$$
x^3-5x^2-5x+1=\underbrace{\ (x+1)\ \vphantom{\left(x^2\right)}}_{(-1)^n}\underbrace{\left(x^2-6x+1\right)}_{a_n,b_n}\tag9
$$
That is, if $c_n=2c_{n-1}+c_{n-2}$, then $c_n^2$ is a linear combination of $a_n$, $b_n$, and $(-1)^n$.
Suppose that $c_0=0$, $c_1=2$, and $c_2=4$. Then, solving for the coefficients of $a_n$, $b_n$, and $(-1)^n$, we get
$$
c_n^2=a_n-(-1)^n\tag{10}
$$
Thus, we have shown that our observation in $(5)$ is true:
$$
a_n=c_n^2+(-1)^n\tag{11}
$$
where $c_0=0$, $c_1=2$, and $c_n=2c_{n-1}+c_{n-2}$.
Answering the Question
Looking at the odd indexed terms, we get
$$
\begin{align}
a_{2n+1}
&=c_{2n+1}^2-1\tag{12a}\\
&=(c_{2n+1}-1)(c_{2n+1}+1)\tag{12b}
\end{align}
$$
as proposed in the question.