5

I'm trying to prove that Haar measures are localizable. we know that Haar measures are decomposable ( see Haar measures are decomposable) in the sense that:

A measure space $(X,\mathfrak{M},\mu)$ is decomposable if:

(i) $X$ is a disjoint union of measurable subsets, $X=\bigcup_{i\in I}X_{i}$, with $\mu(X_{i})<\infty$ for all $i$.

(ii) $\mu(E)=\sum_{i\in I}\mu(E\cap X_i)$ for every measurable set $E$ of finite measure.

(iii) if $E\subseteq X$ and $E\cap X_i\in \frak{M}$ for all $i$, then $E\in\frak{M}$.

if relation (ii) holds for every $E\in \frak{M}$, then we called $(X,\frak{M},\mu)$ localizable.

$\color{blue}{\textbf{can someone tell me that is my solution correct or not?}}$

$\color{green}{\textbf{my solution:}}$

$\color{red}{\textbf{the idea of proof is to prove that:}}$

$\color{red}{\bigg[}$there exists a measure $\lambda$ on ${\frak{B}}_G$ that is radon and translation invariant and hence is a Haar measure on $G$ and by uniqueness of haar measure, we prove that the first Haar measure $\mu$ is equal with this new measure $\lambda$ and finally, the measure $\lambda$ have a property that localizability is proved.$\color{red}{\bigg]}$

if $G$ be a locally compact group and $(G,{\frak{B}}_G,\mu)$ be Haar measure space where ${\frak{B}}_G$ is the borel $\sigma$-algebra, then if we define a measure $\lambda$ on ${\frak{B}}_G$ such that:

\begin{equation} \lambda(E)= \begin{cases} \underset{i\in I}{\sum}\mu(E\cap X_i) & \;\;\;\;\;\;\;\;\;\;\;\underset{i\in I}{\sum}\mu(E\cap X_i)<\infty \\ \infty & \;\;\;\;\;\;\;\;\;\;\;\underset{i\in I}{\sum}\mu(E\cap X_i)=\infty \end{cases} \end{equation}

$\color{red}{\textbf{proof that $\lambda$ is a translation invariant measure:}}$

if $\{E_j\}_{j\in\mathbb{N}}$ be a family of disjoint measurable sets, then if $\underset{i\in I}{\sum}\mu\bigg[\bigg(\underset{j\in\mathbb{N}}{\bigcup}E_j\bigg)\bigcap X_i\bigg]<\infty$, then $\underset{i\in I}{\sum}\mu(E_j\cap X_i)<\infty$ for every $j\in\mathbb{N}$ and we have

$\lambda\bigg(\underset{j\in\mathbb{N}}{\bigcup}E_j\bigg)=\underset{i\in I}{\sum}\mu\bigg[\bigg(\underset{j\in\mathbb{N}}{\bigcup}E_j\bigg)\bigcap X_i\bigg]=\underset{i\in I}{\sum}\mu\bigg[\underset{j\in \mathbb{N}}{\bigcup}\bigg(E_j\bigcap X_i\bigg)\bigg]=\underset{i \in I}{\sum}\underset{j\in \mathbb{N}}{\sum}\mu(E_j\cap X_i)\color{red}=\underset{j\in \mathbb{N}}{\sum}\underset{i\in I}{\sum}\mu(E_j\cap X_i)=\underset{j\in\mathbb{N}}{\sum}\lambda(E_j)$

equality in red follows from following relation in measure theory. if we consider $\mu$ as counting measure and $X$ as arbitrary set.

$$\int_X\underset{j\in\mathbb{N}}{\sum}f_j(x)d\mu=\underset{j\in \mathbb{N}}{\sum}\int_Xf_j(x)d\mu$$

now if $\underset{i\in I}{\sum}\mu\bigg[\bigg(\underset{j\in\mathbb{N}}{\bigcup}E_j\bigg)\bigcap X_i\bigg]=\infty$, then we have $\underset{j\in\mathbb{N}}{\sum}\lambda(E_j)=\infty$ and $\lambda\bigg(\underset{j\in\mathbb{N}}{\bigcup}E_j\bigg)=\infty$. also it is trivial that $\mu(\phi)=0$ and is proved that $\lambda$ is really a measure on ${\frak{B}}_G$.

it is easy to see that $\lambda$ is translation invariant.

we have to prove that the measure $\lambda$ is radon.

$\color{red}{\textbf{proof that $\lambda$ is finite on compact sets:}}$

if $K\in {\frak{B}}_G$ is a compact set, then $\mu(K)<\infty$ and by property (ii) of decomposability, it follows that $\underset{i\in I}{\sum}\mu(K\cap X_i)=\mu(K)<\infty$. hence $\lambda(K)=\underset{i\in I}{\sum}\mu(K\cap X_i)<\infty$ and $\lambda$ is finite on compact sets.

$\color{red}{\textbf{proof that $\lambda$ is inner regular on sets of finite measure:}}$

if $E\in{\frak{B}}_G$ and $\lambda(E)<\infty$ and for arbitrary $\epsilon>0$, then

$\lambda(E)=\underset{i\in I}{\sum}\mu(E\cap X_i)$

and by definition, there exists a finite set $F\subseteq I$ suchthat

$\underset{i\in I}{\sum}\mu(E\cap X_i)-\frac{\epsilon}{2}<\underset{i\in F}{\sum}\mu(E\cap X_i)$

now since $\mu\bigg[\underset{i\in F}{\bigcup}(E\cap X_i)\bigg]<\mu(E)<\infty$, then there exists a compact set $K\subseteq \underset{i\in F}{\bigcup}(E\cap X_i)\subseteq E$ such that

$$\mu\bigg[\underset{i\in F}{\bigcup}(E\cap X_i)\bigg]-\frac{\epsilon}{2}<\mu(K)$$

and it follows that:

$\lambda(E)-\epsilon=\underset{i\in I}{\sum}\mu(E\cap X_i)-\epsilon<\underset{i\in F}{\sum}\mu(E\cap X_i)-\frac{\epsilon}{2}=\mu\bigg[\underset{i\in F}{\bigcup}(E\cap X_i)\bigg]-\frac{\epsilon}{2}<\mu(K)$

hence we have

$$ \lambda(E)-\epsilon<\mu(K) $$

where $K\subseteq E$. hence inner regularity on sets with finite measure is proved.

$\color{red}{\textbf{proof that $\lambda$ is outer regular}}$

if $E\in {\frak{B}}_G$ with $\lambda(E)=\infty$. then since $\lambda$ is a measure and $E\subseteq G$, then we have $\lambda(G)=\infty$ and since $G$ is open, then $\lambda$ is inner regular on sets with infinite measure.

now if $E\in {\frak{B}}_G$ and $\lambda(E)<\infty$ and for arbitrary $\epsilon>0$, since $\underset{i\in I}{\sum}\mu(E\cap X_i)=\lambda(E)<\infty$, then $\mu(E\cap X_i)=0$ except for countable number of $i\in \mathbb{N}\subseteq I$. hence we have

$$\lambda(E)=\underset{i\in I}{\sum}\mu(E\cap X_i)=\underset{i\in \mathbb{N}}{\sum}\mu(E\cap X_i)=\mu\bigg[E\bigcap\bigg(\underset{i\in \mathbb{N}}{\bigcup}X_i\bigg)\bigg]$$

now, there exists an open set $O_1\supseteq \bigg[E\bigcap\bigg(\underset{i\in \mathbb{N}}{\bigcup}X_i\bigg)\bigg]$ such that $\mu(O_1)<\mu\bigg[E\bigcap\bigg(\underset{i\in \mathbb{N}}{\bigcup}X_i\bigg)\bigg]+\epsilon$

and it follows that

$$\mu(O_1)<\lambda(E)+\epsilon\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(1)$$

now, there exists a compct set $K\subseteq \bigg[E\bigcap\bigg(\underset{i\in I\setminus\mathbb{N}}{\bigcup}X_i\bigg)\bigg]$ such that

$$\mu\bigg[E\bigcap\bigg(\underset{i\in I\setminus\mathbb{N}}{\bigcup}X_i\bigg)\bigg]<\frac{\epsilon}{2}+\mu(K)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(2)$$

but in the case of Haar measure, the set $\{X_i\}_{i \in I}$ is equal with $\{gU'_n|g\in C, n\in\mathbb{N}\}$ and $H=\underset{n\in \mathbb{N}}{\bigcup}U'_n$ where $H$ is a open subgroup of $G$ and the set $C$ contains one poin from every coset $gH$ (for details, see Haar measures are decomposable). know if $K\subseteq G$ be a compact set, then since $K\subseteq \underset{g\in C}{\bigcup}gH$ and $\{gH|g\in C\}$ is an open cover of $K$, then since $K$ is compact, there exists a finite set $g_1,...,g_n$ such that $K\subseteq \underset{i=1}{\overset{n}{\bigcup}}g_iH$. hence $K$ is subset of union of countable numbers of $X_i$ $\Bigg(K\subseteq \underset{i\in \mathbb{N'}}{\bigcup}X_i\Bigg)$ where $\mathbb{N'}$ is a countable subset of $I$.

now we have

$$K\subseteq \bigg[E\bigcap\bigg(\underset{i\in I\setminus\mathbb{N}}{\bigcup}X_i\bigg)\bigg]\bigcap\bigg[\underset{i\in \mathbb{N'}}{\bigcup}X_i\bigg]=\bigg[E\bigcap\bigg(\underset{i\in\mathbb{N''}}{\bigcup}X_i\bigg)\bigg]$$

where $\mathbb{N''}\subseteq I\setminus\mathbb{N}$ is a countable subset of $I$ and we have

$$\mu(K)\leq\mu\bigg[E\bigcap\bigg(\underset{i\in\mathbb{N''}}{\bigcup}X_i\bigg)\bigg]=\underset{i\in \mathbb{N''}}{\sum}\mu(E\cap X_i)=0$$

because we know that if $i\in I\setminus\mathbb{N}$, then $\mu(E\cap X_i)=0$.

hence $\mu(K)=0$ and from formula $(2)$, we have $\mu\bigg[E\bigcap\bigg(\underset{i\in I\setminus\mathbb{N}}{\bigcup}X_i\bigg)\bigg]<\frac{\epsilon}{2}+\mu(K)=\frac{\epsilon}{2}$

also there exists an open set $O_2\supseteq \bigg[E\bigcap\bigg(\underset{i\in I\setminus\mathbb{N}}{\bigcup}X_i\bigg)\bigg]$ such that $\mu(O_2)<\mu\bigg[E\bigcap\bigg(\underset{i\in I\setminus\mathbb{N}}{\bigcup}X_i\bigg)\bigg]+\frac{\epsilon}{2}$

hence we have

$$\mu(O_2)<\mu\bigg[E\bigcap\bigg(\underset{i\in I\setminus\mathbb{N}}{\bigcup}X_i\bigg)\bigg]+\frac{\epsilon}{2}<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(3)$$

and by formula $(1)$ and $(3)$, we have

$$\mu(O_1\cup O_2)\leq\mu(O_1)+\mu(O_2)<[\lambda(E)+\epsilon]+\epsilon=\lambda(E)+2\epsilon$$

where $E\subseteq \bigg[E\bigcap\bigg(\underset{i\in \mathbb{N}}{\bigcup}X_i\bigg)\bigg]\bigcup \bigg[E\bigcap\bigg(\underset{i\in I\setminus\mathbb{N}}{\bigcup}X_i\bigg)\bigg]\subseteq O_1\cup O_2$.

but since $\lambda(E)<\infty$, then $\mu(O_1\cup O_2)<\infty$ and by second decomposability property of Haar measure, we have

$$\infty>\mu(O_1\cup O_2)=\underset{i\in I}{\sum}\mu\bigg[\bigg(O_1\cup O_2\bigg)\cap X_i\bigg]$$

hence by definition of $\lambda$, it follows that

$$\lambda(O_1\cup O_2)=\underset{i\in I}{\sum}\mu\bigg[\bigg(O_1\cup O_2\bigg)\cap X_i\bigg]=\mu(O_1\cup O_2)<\lambda(E)+2\epsilon$$

hence we have

$$ \lambda(O_1\cup O_2)<\lambda(E)+2\epsilon $$

where $E\subseteq O_1\cup O_2$. and is proved that $\lambda$ is outer regular.

$\color{red}{\textbf{proof that $\mu$ is localizable}}$

now by uniqueness of Haar measure, we know that $\lambda=\mu$ and we have:

\begin{equation} \mu(E)=\lambda(E)= \begin{cases} \underset{i\in I}{\sum}\mu(E\cap X_i) & \;\;\;\;\;\;\;\;\;\;\;\underset{i\in I}{\sum}\mu(E\cap X_i)<\infty \\ \infty & \;\;\;\;\;\;\;\;\;\;\;\underset{i\in I}{\sum}\mu(E\cap X_i)=\infty \end{cases} \end{equation}

and it follows that in any case we have

$\mu(E)=\underset{i\in I}{\sum}\mu(E\cap X_i)$

and second decomposability property of Haar measure holds for every $E\in {\frak{B}}_G$ and it follows that Haar measure $\mu$ is localizable.

  • Do not put "EDITED" in your title, nor exclamation marks. This is silly and hurts readability/searchability. Titles aren't meant to alert the reader to the content, not to serve as advertisement. – Brevan Ellefsen Mar 28 '23 at 17:34

1 Answers1

1

I did not check your proof, but Haar measures are not localizable in the sense that you define (some authors call this "strictly localizable" instead).

Indeed, as established in this post, we need a semi-finite measure for a localizable space. Yet, in this answer it is shown that Haar measure need not be semi-finite.

J. De Ro
  • 22,064
  • 2
  • 20
  • 49
  • 1
    A comment for anyone who might stumble upon this thread: whether "Haar measure" is localizable or not, really depends on the definition being used; e.g. Haar measure in Fremlin's books is always localizable. – Mogget Aug 24 '24 at 13:11